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Abstract: JAG1 gene through Notch signaling is implicated in cell fate decisions in early cardiac development, and mutations in several proteins in the pathway 
have been involved in various disorders. Tetralogy of Fallot (TOF) is the most frequent form of complicated congenital heart disease. The abnormality of TOF 
begins through the first eight weeks of fetal growth and is confused with ventricular septal defects, obstruction to right ventricular outflow tract, aortic dextroposi-
tion, and right ventricular hypertrophy. Hence the existence of mutations in JAG1 gene in Iranian patients with TOF is evaluated. The clinical data and peripheral 
blood samples were collected from 44 sporadic nonsyndromic patients with TOF and compared to 44 healthy individuals. DNA was extracted, and the exon 6 of 
the JAG1 gene was amplified by PCR then the PCR products were purified and sequenced. The age range in patients and the control group was 2-36 years, and 
the mean and standard deviation (SD) of the age in patients was (11.69 ± 7.85 years) and in control group (11.63 ± 7.99 years).  Finally, the samples were success-
fully sequenced, then analyzed and one synonymous variant (c.765C>T; p.Y255Y) was observed in 38 patients with frequency (86.4%) and three controls with 
frequency (6.8%). The c.765C>T variant is significantly associated with the pathogenesis of TOF in Iranian population.
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Introduction

Tetralogy of Fallot (TOF; OMIM# 187500) is the 
most frequent form of complicated congenital heart 
disease (CHD), approximately 3.5% of CHD have TOF, 
which is repaired by corrective surgery, males and fe-
males are equally involved (1, 2). The abnormality of 
TOF begins through the first eight weeks of fetal growth 
and is confused with ventricular septal defects (VSD), 
atrial septal defect (ASD) or abnormalities in the bran-
ching pattern of coronary arteries, obstruction to right 
ventricular outflow tract (RVOT), aortic dextroposition 
(AD) and right ventricular hypertrophy (RVH) (3). Cli-
nical signs contain cyanosis/clubbing, hypoxia, breath-
lessness, rejection of food, failure to increase weight 
and serious congenital heart malformation (4). Hypoxia 
induced oxidative DNA damage in TOF patients (5). 
TOF has been seen in some of the syndromes, including 
Down syndrome, Alagille syndrome, CHARGE syn-
drome, and DiGeorge syndrome (1, 6, 7). Like most of 
the other congenital heart diseases, the precise cause of 
TOF is unknown and also happens sporadically, without 
any other anomaly. The presence of mutations in genes 
NK2 Homeobox 5 (NKX2.5), T-Box 1 (TBX1), Binding 
Protein GATA (GATA), and others, and even the interac-
tion between these genetic factors and the environmen-
tal risk factors, causes the pathogenesis of the disease. 
Dominant mutations resulting from the haploinsuffi-

ciency can cause TOF by mutations within the genes 
encoding cardiac transcription factors. It is assumed 
that de novo mutations in the jagged1 (JAG1; OMIM# 
601920) ligand of transmembrane receptors Notch 1 
(NOTCH1), Notch 2 (NOTCH2) and themselves, and 
other genes that are effective in cardiac development are 
involved in isolated TOF. JAG1 gene is an extremely 
conserved ligand that plays a very important role in the 
developmental stages of the mammals' heart (8-10). 
JAG1 encodes jagged1, a ligand for the NOTCH family 
of transmembrane receptors (11).  JAG1 through Notch 
signaling is implicated in cell fate decisions in early 
cardiac development, and mutations in several proteins 
in the pathway have been involved in various disor-
ders (12, 13). JAG1 gene is located at 20p12.2, has 26 
exons and is transcribed to produce a 5.901 kb mRNA 
(14). The Jagged1 is a glycosylated transmembrane 
protein of 180 kDa and 1218 amino acids length with 
some characteristics, containing an N-terminal ‘DSL’ 
motif found in the delta, serrate, and lag-2 ligands in 
the Notch family, 16 tandem repeated epidermal growth 
factor (EGF)-like domains, a small intracellular region, 
cysteine rich region, and a transmembrane region (15-
17). Alagille syndrome (AGS) an autosomal dominant 
disease is a multisystem disorder described by extre-
mely variable expressivity, frequently caused by hete-
rozygous mutations in the JAG1 gene (18, 19). Besides, 
isolated congenital heart defects with sporadic and a 



104

JAG1 gene mutations and Tetralogy of Fallot.

Cell Mol Biol (Noisy le Grand) 2018 | Volume 64 | Issue 4 

Amin Safari-Arababadi et al.

small number of family cases are related to mutations 
in the JAG1 gene, cases such as obstructive right heart 
disease, including TOF, defects in the development 
of the inner ear leading to deafness and both familial 
deafness and CHD (20-22). Between the Notch ligands, 
Exon 6 of JAG1 gene is extremely conserved and is cri-
tical for ligand binding to the Notch receptor (9, 23). 
JAG1 mutations that change the capacity for binding to 
the receptors are important to identify the pathogenesis 
of the disease (24). In addition to genetic factors due to 
the interference of other factors such as environmental 
factors, the TOF etiology is not accurately identified. So 
despite many advances in treatment, some patients still 
die (0.5% to 6%) (25). Due to the lack of studies on 
JAG1 gene mutations in TOF cases from Iran, this study 
was conducted to investigate the mutations in the JAG1 
gene in the exon 6 region in patients with TOF from Iran 
using DNA sequencing method.

Materials and Methods

Study subjects
The study was approved by the Ethics Committee 

of Shahid Sadoughi University of Medical Sciences, 
Yazd, Iran. The informed written consent was obtained 
from the patients or their parents prior to the procedure, 
and all patient's personal health information was kept 
confidential. In a case-control study, 44 (24 males, 20 
females) sporadic nonsyndromic patients with TOF in 
the age group of 2–36 years were included in the study 
group. And 44 healthy individuals (sex and age matched 
with the study group) with no family history of CHD, 
and other related genetic diseases formed the control 
group. Cases and controls were recruited from Decem-
ber 2015 to January 2017 by Afshar Hospital, Yazd, 
Iran. TOF patients were evaluated by a cardiologist and 
confirmed by echocardiography.

Procedure and variable assessments
Human genomic DNA was isolated from Ethylene-

diaminetetraacetic acid (EDTA) anticoagulated blood of 
all samples (n=88). DNA was extracted from the blood 
by High pure PCR Template Preparation Kit (Roche 
Diagnostics GmbH, Mannheim, Germany) according 
to the manufacturer's instructions. A polymerase chain 
reaction (PCR)  primer pair flanking the exon 6 were 
designed using Primer3Plus to produce a PCR amplicon 
of 500 bp and ordered from SinaClon BioScience Co., 
Iran (Table 1). PCR was performed in a final volume 
of 35 µL containing 17.5 µL Master Mix (Ampliqon, 
Odense M, Denmark), 0.8 µL of each primer, 12.9 µL 
ddH2O and 100 ng of genomic DNA. Amplification 
was done in T100™ Thermal Cycler (Bio-Rad, CA, 
USA) with an initial denaturation at 95 °C for 5 min, 
followed by 35 repetitive cycles of denaturation at 95 
°C for 30 sec, annealing at 63 °C for 30 sec, and exten-
sion at 72 °C for 1 min, followed by a final extension 

at 72 °C for 5 min. PCR products were electrophoresed 
on agarose gel, and visualized under ultraviolet (UV)  
light after electrophoresis. All PCR products were puri-
fied and sequenced by the Macrogen Sequencing Team 
(Macrogen Inc., Seoul, Korea).

Bioinformatical and statistical analysis
The DNA sequence alignments were assembled 

using CodonCode Aligner software (CodonCode Cor-
poration) and Geneious software (Biomatters Ltd.) with 
the reference sequence published on the NCBI website. 
The data were analyzed using mean ± SD, Independent 
two-sample t –tests and Chi-square, by the SPSS 
software, version 16.0 (SPSS Inc., Chicago IL., USA).  
A P-value of less than 0.05 was considered significant.

Results

The statistical analysis showed that the frequency of 
gender (24 males, 20 females) distribution in the case 
and control group is quite similar (P=1.000, Table 2). 
The age range in patients and the control group was 
2-36 years, and the mean and standard deviation (SD) of 
the age in patients was 11.69 ± 7.85 years and in control 
group was 11.63 ± 7.99 years, so there was no signi-
ficant difference between the means (P=0.968, Table 
2). Finally the samples were successfully sequenced, 
then analyzed and one synonymous variant, c.765C>T; 
p.Y255Y, was observed in 38 patients with frequency 
86.4% and three controls with frequency 6.8%. Fig. 
1 illustrates a JAG1 heterozygous variant c.765 C>T.  
So statistical analysis of data showed a significant dif-

Primer                                                    Sequence (5'->3') Length (bp)
Forward CTTTTGTCAGGAGTCGGCTG 20
Reverse ATGTTTCTAGCCCCAGTCGT 20

Table 1. The sequences of primers for exon 6 of JAG1 gene.

TOF (n=44) Control (n=44) p
Male / Female, n (%) 24 (54.5)/20 24/20 (45.5) 1.000
Age (Mean±SD) (year) 11.69±7.85 11.63±7.99 0.968
765C>T / wild-type, n (%) 38  (86.4) / 6  (13.6) 3 (6.8)/41 (93.2) <0.001

Table 2. General and variant characteristics of TOF patients and controls.

Figure 1. Sequencing chromatograms showing JAG1 hetero-
zygous variant c.765 C>T, wild-type is represented in the upper 
panel.
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Mutations in some genes are associated with TOF, 
including JAG1 (1, 28-30), NKX2.5 (31-35), NKX2.6 
(36), GATA6 (37-39), GATA4 (40, 41), GATA5 (42, 
43), Zinc Finger Protein, FOG Family Member 2 
(ZFPM2/FOG2) (33, 44), Growth Differentiation Fac-
tor 1 (GDF1) (45), T-Box 1 (TBX1) (46), TBX5 (47), 
NOTCH1 (48), Gap Junction Protein Alpha 5 (GJA5) 
(49), Cbp/P300 Interacting Transactivator With Glu/
Asp Rich Carboxy-Terminal Domain 2 (CITED2) (50, 
51), Blood Vessel Epicardial Substance (BVES) (52), 
Paired Like Homeodomain 2 (PITX2) (53).

In conclusion, although synonymous variants ex-
change only codons, not amino acids, studies have 
shown that they can change gene expression and alter 
structure, stability, and the protein function and play a 
major role in human disorders pathogenesis (54-60). 
The synonymous variant c.765C>T does not change the 
amino acid, hence, based on the effects of the silencing 
variants on the protein functions, it may be concluded 
that, the variant affects the JAG1 function as a ligand 
binding form. Accordingly, functional study of this do-
main and its associated ligands can more clearly illumi-
nate the effects of the variant and its pathogenicity. In 
the Middle East as well as Iran, limited genetic studies 
have been conducted on congenital heart disease such as 
TOF. According to the population-specific distribution 
of genetic variants for CHD, present study displays the 
outcomes of mutational analysis in patients with CHD 
in Iran. Therefore, this variant has a significant role in 
Iranian patients with TOF.
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