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Introduction

Diffuse large B cell lymphoma (DLBCL) is a hema-
tological malignancy characterized by a large degree of 
heterogeneous gene expression (1-3). One such gene is 
proto-oncogene PIM1 (the proviral insertion site of Molo-
ney murine leukemia virus) which is highly expressed in 
up to 50% of DLBCL patients (4,5) and promotes survival 
and proliferation of DLBCL cells (6-8) . PIM1, located on 
chromosome 6p21, produces a transcript that contains a 
G/C-rich sequence in the 5ʹ untranslated region (UTR) and 
five copies of AUUUA destabilizing motifs in the 3ʹ UTR. 
The use of alternative translation initiation sites (AUG 
or CUG) results in the synthesis of 34 KD and 44 KD, 
two different protein isoforms that both retain their serine/
threonine kinase activity. Moreover, PIM1 kinases have 
no regulatory domains (5). The crystal structure of PIM1 
reveals the presence of a unique hinge region that connects 
the two lobes of the protein kinase domain. As a result, 
the manner of ATP binding to PIM1 kinases fundamentally 
differs from the manner in which it binds to other protein 
kinases, which develop several small-molecule inhibitors 
for PIM1 kinases. These compounds either interact with 
the hinge backbone of PIM1 through hydrogen bond for-
mation or form polar interactions with the active site ly-
sine residue (9). However, PIM1 inhibitors only modestly 

impair DLBCL cell survival, suggesting that PIM1 kinases 
represent molecular progression markers rather than pri-
mary therapeutic targets in DLBCL (10). Thus, investi-
gating the mechanisms of PIM1 expression in DLBCL 
beyond the direct inhibition of PIM1 would be an effective 
approach for improved treatment of DLBCL with clinical 
heterogeneity.

Previous studies indicate that aberrantly high PIM1 
expression occurs primarily due to activation-induced 
cytidine deaminase (AID)-mediated chromosomal trans-
locations or abnormal PIM1 hypermutation, leading to 
DLBCL lymphomagenesis (10-12). A genome-wide trans-
location sequencing (HTGTS) study demonstrated an im-
portant role of AID in controlling methylation diversity in 
germinal center B cells (GCB) (13), indicating the possible 
involvement of AID in the regulation of gene expression 
through its epigenetic functions (8,13-15). Elucidating the 
mechanism underlying the alternative epigenetic modula-
tion of AID to PIM1 might provide a good modality for 
DLBCL treatment.

Here, we used AID-deficient and overexpressed DLB-
CL cells to identify that AID positively or negatively regu-
lates PIM1 by binding to the promoter together with DNA 
methyltransferase 1 (DNMT1) or ten-eleven translocation 
family member (TET2) respectively(16,17). We observed 
that PIM1 expression is regulated either by treatment with 
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5-azacytidine (an inhibitor of DNMT1) or with DMOG (an 
inhibitor of TET2). Our results provide a novel concept for 
an alternative co-factor role of AID in modulating gene 
expression by forming different complexes with TET2 or 
DNMT1.

Materials and Methods

Cell lines and cell treatment
BeNa Culture Collection provided SU-DHL-4 and 

OCI-LY7 DLBCL cell lines. The cells were cultured in 
IMDM with 10% FBS, non-essential amino acids, 1% pe-
nicillin-streptomycin, and 50 μm β-mercaptoethanol. The 
culture was maintained at 37 °C with 5% CO2. 

SU-DHL-4 cells were treated with 5-Azacytidine (10 
μM) (S1782, Selleckchem, Houston, TX, USA) for 24 
hours. The OCI-LY7 cells were treated with DMOG (1.5 
mM) (S7483, Selleckchem, Houston, USA) for 96 h. 

Establishment of AID-deficient and AID-overexpressed 
DLBCL cell lines

Dr. Junjie Zhang from the University of Southern Cali-
fornia (Los Angeles, USA) gifted the pL-CRISPR.EFS.
PAC. The AICDA sgRNA was designed at Zhang labo-
ratory's CRISPR design website (http://crispr.mit.edu/), 
then sequenced by Sunny Biotech Co., Ltd. A non-genome 
targeting sgRNA was utilized as a control. The gRNA 
sequences are listed in Table 1. The Pwpi-GFP plasmids 
were used to create Pwpi-AID-GFP lentivirus constructs 
by inserting AID cDNA(10). The sequences of primers for 
amplifying AID cDNA were as follows: AID_F (5’ -CTG-
GACACCACTATGGACAGCCTCTTGATG-3’), AID_R 
(5’-CATTCCTGGAAGTTGCTATTAAAGTCCC-3’). To 
generate stable DLBCL cell lines with integrated pCas9-
AID or Pwpi-AID-GFP transgenes, the plasmids pCas9-
AID or Pwpi-AID-GFP were transfected into 293 T cells 
which had been seeded 24 h before transfection at a den-
sity of 1 × 106 cells per 5 cm plate. Using the X-treme 
GENE HP DNA transfection reagent (Roche, Mannheim, 
Germany), the ΔR9 and pVSVG helper plasmids were co-
transfected into cells. After 72 hours, supernatants were 
collected. To infect DLBCL cells (1 × 106), a freshly pre-
pared lentivirus with either AID knock-out or AID-ove-
rexpression was used. The infection was done with a 1000 
× g spin inoculation for 90 minutes at room temperature, 
along with 10 μg/mL polybrene. Puromycin (0.6 µg/mL) 
was used to select stably integrated DLBCL cells for 5 
days.

RNA extraction and quantitative RT-PCR
Isolation of total RNA from cell pellets was carried out 

using TRIzol (Invitrogen; Thermo Fisher Scientific, Inc.) 
in accordance with the manufacturer's guidelines. Synthe-
sis of cDNA for use in quantitative PCR studies was per-
formed using the PrimeScript™ RT reagent Kit (TaKaRa 
Bio, Inc.). Real-time PCR reactions were carried out on 
an Mx3000P qPCR system (Agilent Technologies, Inc.) 
using SYBR-Green dye (TaKaRa Bio, Inc.) in triplicate. 
An endogenous control was established by measuring the 
expression of the ACTB gene product. The fold change in 
each group was calculated and compared (18,19). Table 2 
provides the list of primers used.

In vitro cell proliferation 
To assess proliferation rates, 1× 106 cells were cultured 

in six-well plates with 3 mL of FBS-free Dulbecco's Modi-
fied Eagle Medium (Hyclone) supplemented with non-es-
sential amino acids and penicillin-streptomycin for 36 h. 
The cells were stained with trypan blue, and the absolute 
number was determined using the Nexcelom chamber.

Immunoblot analysis
To extract the proteins, cell pellets were dissolved 

in RIPA buffer with various protease inhibitors (Sigma, 
Shanghai,China). After sonication and centrifugation, the 
protein supernatant was collected and loaded onto SDS-
PAGE gels. The blots were then probed with specific anti-
bodies including anti-AID, anti-TET2, anti-DNMT1, and 
anti-PIM1(CST, Danvers, MA, USA). GAPDH was used 
as a loading control. The protein signal was detected using 
secondary antibodies conjugated with horseradish peroxi-
dase and visualized with chemiluminescence.

Chromatin immunoprecipitation
Previously published protocols were followed for 

chromatin immunoprecipitation (ChIP) experiments (20). 
Briefly, 30 million cells were fixed with 1% HCHO (Sig-
ma) for 15 minutes at room temperature and then quen-
ched with 0.125 M glycine. Chromatin was isolated, soni-
cated to obtain fragments of 300-500 bp, and pre-cleared 
with Dynabeads Protein G beads (Invitrogen). Approxi-
mately half million cell equivalents were taken as input, 
and the remaining chromatin was incubated overnight at 
4°C with 5 μg of specific antibody or normal IgG. Immu-
nocomplexes were captured with Dynabeads Protein G 
beads (Invitrogen), cross-links were reversed, and DNA 
was purified for qPCR using SYBR Premix Ex TaqTM 

gRNA Oligo 1 (5’-3’) Oligo 2 (5’-3’)
AICDA-gRNA-1 CACCGGCCTCTTCACTACGTAGCACAGG AAACCCtGTGCTACGTAGTGAAGAGGCC
AICDA -gRNA-2 CACCGGTAAGTCATCAACCTCATACAGG AAACCCtGTATGAGGTTGATGACTTACC
AICDA-gRNA-3 CACCGGGACTTTGATAGCAACTTCCAGG AAACCCtGGAAGTTGCTATCAAAGTCCC
Non-targeting control CGCTTCCGCGGCCCGTTCAA ACGGAGGCTAAGCGTCGCAA

Table 1. The sequence of gRNAs for Crispr/Cas9 targeting AID.

ID Forward strand (5'-3') Reverse strand (5'-3')
AICDA CTACATCTCGGACTGGGACC TCAGACTGAGGTTGGGGTTC
PIM1 AAAATCAACTCGCTTGCCCA GGATGCCTGAGTAGACCGAG
ACTB ACTCTTCCAGCCTTCCTTCC CGTACAGGTCTTTGCGGATG

Table 2. Sequences of primers used for quantitative real-time PCR
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AID-KO OCI-LY7 cells (p < 0.01) (Fig. 1C and D). To 
verify whether the AID/DNMT1 complex and AID/TET2 
complex directly binds to PIM1 to modulate PIM1 expres-
sion, we performed a ChIP experiment using antibodies 
against H3K4me3, AID, DNMT1, and TET2. Immunopre-
cipitated and input DNA were analyzed by qPCR using 
primers that amplify fragments in the PIM1 promoter. 
Abundant AID, DNMT1, and TET2 bound to the PIM1 
promoter along with H3K4me3 enrichment (Fig. 2A-2D). 
DNMT1 binding dropped nearly 2-fold in AID-KO SU-
DHL-4 cells (p < 0.05), while TET2 dropped 26-fold in 
AID-KO OCI-LY7 cells (p < 0.01) (Fig. 2A and 2C). In 
addition, the PIM1 PCR fragments visualized on 1.5% 
agarose gels showed an absence of bands in AID-KO 
DLBCL cells (Fig. 2B, Fig. 2D). These results suggest that 

(TaKaRa) with an Mx3000 thermocycler (Agilent Techno-
logies). The primer sequences used for qPCR are available 
in Supplementary Table 3. The ChIP-qPCR signals were 
normalized as follows:

(IP/Inputcorr)/positive control = (((IPspecific antibody −
IPIgG)/Input) × 1000)/positive control. 

ChIP experiments were performed with the following 
antibodies: anti-AID (ab59361, Abcam), anti-TET2 
(#18950, CST), anti-DNMT1 (Abcam, ab13537), and 
normal goat IgG (#sc2346; Santa Cruz). PCR of the DNA 
from ChIP was performed for 25 cycles. The bands were 
observed on 1.5% agarose gels and images were acquired.

Statistical analysis
Statistical analysis was conducted using GraphPad 

Prism 6.0 (GraphPad Software, LaJolla, CA, USA) with 
unpaired t-tests and ANOVA multiple tests. A p-value of 
less than 0.05 was considered statistically significant, as 
indicated.

Results

AID results in the divergent PIM1 expression in dis-
tinct DLBCL cell lines

PIM1-related B cell tumorigenesis is linked to AID-me-
diated hypermutation. To explore the roles of AID in the 
regulation of PIM1 expression in DLBCL, CRISPR/Cas9 
technology was used to establish AID-depleted DLBCL 
cell lines (AID-KO SU-DHL-4 and AID-KO OCI-LY7) 
as described in our previous study (11), and lentivirus of 
Pwpi-AID-GFP was used to construct stable cell lines with 
overexpression of AID. PIM1 mRNA levels of AID-KO 
SU-DHL-4 cells were elevated by almost 9-fold compared 
with those in AID-WT SU-DHL-4 cells (p < 0.05) (Fig. 
1A). Meanwhile, PIM1 expression in AID-KO OCI-LY7 
cells dropped to about 70% in comparison with AID-WT 
OCI-LY7 cells (p < 0.05) (Fig. 1B). Immunoblot analysis 
also showed an increased PIM1 protein level in AID-KO 
SU-DHL-4 (Fig. 1C) but a decreased amount in AID-KO 
OCI-LY7 cells (Fig. 1D). In addition, the grayscale ana-
lysis results also identified an increase and decrease of 
PIM1 protein level in AID-KO and AID-OE SU-DHL-, 
and AID-WT and AID-OE OCI-LY7 cells, respectively 
(all p < 0.01) (Fig. 1C and D). These results show that AID 
deficiency induces divergent PIM1 expression in distinct 
DLBCL cells.

AID binds to the promoter of PIM1 as a co-factor
AID has also been reported to interact with DNMT1 

in AID-positive hematopoietic cancers (16,21) and form 
a complex with TET2 in DLBCL (11,22). We investigated 
whether epigenetic modification of AID to PIM1 expres-
sion beyond the mutation function of AID might occur in 
DLBCL cell lines. Data derived from DNMT1 and TET2 
immunoblots indicated that along with AID depletion, 
DNMT1 protein level decreased in AID-KO SU-DHL-4 
cells (p < 0.001), while TET2 protein level dropped in 

ID Forward strand (5'-3') Reverse strand (5'-3')
ChIP-PIM1 GATCAATCGGCCTCTGGTTG CAGGAGTAAAGGGGAGGAGC

Table 3. Primer sequences used in qPCR and PCR for ChIP.

Figure 1. AID mediates divergent PIM1 levels in distinct DLBCL 
cells. (A) PIM1 mRNA levels in 4AID-WT, 4AID-KO, and 4AID-OE 
were detected by Real-Time PCR. (B) PIM1 mRNA levels in 7AID-
WT, 7AID-KO, and 7AID-OE were detected by Real-Time PCR. 
β-actin was taken as an internal gene control. (C) DNMT1, PIM1, 
and AID protein levels in 4AID-WT, 4AID-KO, and 4AID-OE were 
detected by immunoblots. GAPDH protein was taken as an internal 
control. The immunoblots were performed by grayscale analysis, the 
relative grayscale of PIM1 bands in immunoblots relative to GAPDH 
was performed, analyzed statistically, and presented as histograms. 
(D) TET2, PIM1, and AID protein levels in 7AID-WT, 7AID-KO, and 
7AID-OE were detected by immunoblots. GAPDH protein was taken 
as an internal control. The immunoblots were performed by grays-
cale analysis, the relative grayscale of PIM1 bands in immunoblots 
relative to GAPDH was performed.  Statistical analysis was done and 
presented as histograms. Data are presented as mean ±SD. *, ** and 
*** represent P<0.05, P<0.01 and P<0.001, respectively. OE, overex-
pression.
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AID-DNMT1 and AID-TET2 complexes recruit PIM1 
promoters in distinct DLBCL cell lines.

Combined AID/DNMT1 or AID/TET2 depletion leads 
to reduced or increased PIM1 levels in DLBCL cells

To further elucidate the combined role of AID and 
DNMT1 or AID and TET2 in DLBCL cells, we introduced 
the DNMT1 inhibitor 5-Azacytidine or TET2 inhibitor 
DMOG(23,24). Administration of 5-Azacytidine caused 
a nearly 13-fold increase of PIM1 transcripts in AID-KO 
SU-DHL-4 cells (p < 0.01) (Fig. 3A), and about 80% de-
crease of PIM1 transcripts in AID-KO OCI-LY7 cells (p 
< 0.001) (Fig. 3C). According to the immunoblot results, 
the 5-Azacytidine or DMOG treatments caused a decrease 
in DNMT1 or TET2 and AID (Fig. 3B, D, lanes 2 and 4). 
In addition, the absence of both AID and DNMT1 caused 
apparent elevated PIM1 levels in AID-KO SU-DHL-4 (p < 
0.001) (Fig. 3B, lane 4), while depletion of both AID and 
TET2 led to reduced PIM1 protein level in AID-KO OCI-
LY7 (p < 0.001) (Fig. 3D, lane 4). The grayscale analysis 
also confirmed alteration of the PIM1 protein level caused 
by combined inhibition of AID-DNMT1 or AID-TET2 
(Fig. 3B, D). The data identified the combined enhance-
ment or suppression effect of AID/DNMT1 or AID/TET2 
to PIM1 in DLBCL. Here, the data suggest that AID could 
play different roles beyond its mutation function when for-

ming complexes with different proteins, such as DNMT1 
and TET2.

AID/DNMT1-mediated PIM1 inhibition or AID/TET2-
mediated PIM1 activation show divergent DLBCL cell 
proliferation 

To elucidate the impact of AID/DNMT1 or AID/TET2 
mediated PIM1 inhibition or activation on the cellular 
function of DLBCL, we kinetically measured cell num-
bers in the absence of nutrition for up to 36 h. Interes-
tingly, we observed elevated cell division in AID-KO 
SU-DHL-4 and AID-WT OCI-LY7 cells. Contrastingly, 
proliferation was not reported in AID-WT SU-DHL-4 and 
AID-KO OCI-LY7 cells (Fig. 4). The results suggest a di-
vergent proliferation in DLBCL cell lines, in which PIM1 
expression is inhibited by the AID/DNMT1 complex in 
SU-DHL-4 cells, while PIM1 expression is increased by 
the AID/TET2 complex in OCI-LY7 cells.

Discussion

Figure 2. AID binds to the promoter of PIM1 as a co-factor. (A, B) 
Genome DNA from Chromatin Immunoprecipitation (ChIP) of PIM1 
promoter by anti-H3K4me3, anti-AID, and anti-DNMT1 pull down 
in AID-WT, and AID-KO SU-DHL-4 cells were detected by quanti-
tative PCR (A) and PCR (B). (C, D) Genome DNA from Chromatin 
Immunoprecipitation (ChIP) of PIM1 promoter by anti-H3K4me3, 
anti-AID, and anti-TET2 pull down in AID-WT, and AID-KO OCI-
LY7 cells were detected by quantitative PCR (C) and PCR (D). Data 
are presented as mean ±SD. * and ** represent P<0.05 and P<0.01, 
respectively. 

Figure 3. Combined depletion of AID/DNMT1 or AID/TET2 leads 
to elevated or dropped PIM1 levels in DLBCL cells. (A) the trans-
cript levels of PIM1 in 4AID-WT and 4AID-KO after being treated 
with 5-Azacytidine (10μM) for 24 hours were detected by Real-Time 
PCR. β-actin was used as an internal gene control. (B) the transcript 
levels of PIM1 in 7AID-WT and 7AID-KO after being treated with 
DMOG (1.5 mM) for 96 hours were detected by Real-Time PCR. 
β-actin was taken as an internal gene control. (C) DNMT1, PIM1, 
and AID protein levels in 4AID-WT and 4AID-KO after being treated 
with 5-Azacytidine (10μM) for 24 hours were detected by immuno-
blots. GAPDH protein was used as an internal control. The immuno-
blots were performed using grayscale analysis; the relative grayscale 
of PIM1 bands in immunoblots relative to GAPDH was statistically 
analyzed and shown as histograms. (D) TET2, PIM1, and AID protein 
levels in 7AID-WT and 7AID-KO after being treated with DMOG 
(1.5 mM) for 96 hours were detected through immunoblots. GAPDH 
protein was taken as an internal control. The immunoblots were per-
formed by grayscale analysis, the relative grayscale of PIM1 bands 
in immunoblots relative to GAPDH was performed, statistically ana-
lyzed, and presented as histograms. Data are presented as mean ±SD. 
*,** and *** represent P<0.05, P<0.01 and P<0.001, respectively. 
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Previous studies suggest that the deregulation of PIM1 
is linked to DLBCL pathogenesis(3,4). The complex 
mechanisms involved in PIM1 regulation are reported in 
DLBCL and include a series of gene networks involved 
in transcription and post-transcription regulation(25,26). 
However, the AID/DNMT1 or AID/TET2 cooperation 
would be another possible method of PIM1 expression 
modulation. This alternative PIM1 regulatory mechanism 
is yet to be elucidated. According to this study, PIM1 was 
either silenced or activated in different DLBCL partially 
due to the effects of AID/DNMT1 or AID/TET2 complex 
binding to the PIM1 promoter. These results suggest an 
alternative co-factor role of AID to PIM1 in DLBCL and 
enable cancer to be classified based on the presence or 
absence of PIM1.

AID tends to cooperate with other proteins (15,27), 
which recruit it to DNA transcription regions (28,29), with 
the aim of regulating gene expression. However, whether 
gene expression is modulated by AID and other protein 
cooperation is yet to be elucidated. Here, we identified 
that the AID/DNMT1 or AID/TET2 complex is involved 
in the silencing or activation of PIM1 in DLBCL (Fig. 4). 
The results partially explain the findings that AID has a 
role in DNA epigenetic regulation, mainly methylation 
or demethylation modifications, which manifest through 
the promotion or inhibition of gene expression (Fig. 2). 
As a co-factor, AID assists DNMT1 in inhibiting PIM1 
expression or enables TET2 to induce PIM1 expression in 
DLBCL (Fig. 4). This concept provides a new approach to 
understanding AID's function in cancers. 

Some patients with DLBCL develop drug resistance 
to traditional therapeutic regimens, such as chemotherapy 
or R-CHOP (anti-CD20 monoclonal antibody-rituximab, 
combined with cyclophosphamide, vincristine doxorubi-
cin, and prednisone) (30-32). Targeting PIM1 inhibitors 
could also be a therapeutic alternative (33), however, the 
effect is unsatisfactory (34). Our results revealed weak 
PIM1 expression in SU-DHL-4 DLBCL cells while strong 
PIM1 expression in OCI-LY7 DLBCL cells (Fig. 1 and 
Fig. 4). This suggests a way of classifying DLBCL through 
negative or positive PIM1 expression. For the DLBCL 
with weak PIM1 expression, alternative treatment targets 
would be selected instead of PIM1 inhibition (Fig. 3). In 
addition, selecting checkpoints identified in this study 
(AID, DNMT1, and TET2) would be an effective therapy 
for DLBCL (Fig. 4). Identifying the specific pathogenesis 
of heterogeneous DLBCL has great potential for the deve-
lopment of personalized treatment.

However, the study has limitations. First, we checked 
the existence of AID/DNMT1 in OCI-LY7 and AID/TET2 
in SU-DHL-4, but the AID/DNMT1 had weaker enrich-
ments to PIM1 in OCI-LY7, and AID/TET2 had lower bin-
ding to PIM1 in SU-DHL4. The latent mechanisms need 
to be further explored. Second, more investigations into 
the alternative role of AID in DLBCL should be performed 
to the abundance of cancer-associated genes to confirm 
our proposed new role of AID beyond the deamination 
function. Third, all the hypotheses and results need to be 
verified in clinical DLBCL samples.

In conclusion, our data suggest an alternative co-fac-
tor role of AID to PIM1 in DLBCL. The AID-DNMT1 
or AID-TET2 complex directly binds to the promoter of 
PIM1, thus inhibiting or enhancing PIM1 expression in the 
progression of DLBCL. Differential treatment of DLBCL 
based on PIM1 expression would be an effective method 
of individualizing therapy. In the future, our findings may 
be useful for the in-depth exploration of AID’s alterna-
tive role beyond its deamination in tumor-related genes in 
DLBCL. 
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