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Introduction

Rheumatoid arthritis is well-defined as a systemic au-
toimmune disorder associated with a chronic inflamma-
tory process, which gradually leads to joint destruction, 
deformity, disability, chronic pain, and even premature 
death (1). Rheumatoid arthritis is also a serious disor-
der that significantly impairs people's quality of life and 
affects 1% of the world's population (2). Inflammatory 
responses complicate the development and progression of 
rheumatoid arthritis (3). Therefore, the development of ef-
fective anti–inflammatory medication to treat rheumatism 
is urgently required.

Safflower (Carthamus tinctorius L., a member of the 
chrysanthemum family), which is distributed widely 
throughout the world, including China, India, Southern 
Europe, and North America, is widely used for the treat-
ment of bone formation, osteoporosis blood stasis, and 
prevention of rheumatism in Korea (4). Moreover, a large 
proportion of phenolic compounds, such as serotonin 
(5-hydroxytryptamine) derivatives, serotonin glycosides, 
lignin, and flavonoids, have been isolated from safflower 
seeds (5). Our previous study showed that safflower seeds 
exerted a pleiotropic effect on several parameters related 
to oxidative stress and inflammation. In addition, they had 
a renoprotective effect in cisplatin-treated mice (6), and 

serotonin and two of its derivatives, N-feruloylserotonin 
and N-(p-coumaroyl) serotonin, were identified as biologi-
cally active substances in the seeds (7). Furthermore, our 
previous study showed that serotonin and its major deriva-
tives [N-feruloylserotonin and N-(p-coumaroyl) serotonin] 
suppressed inflammation- and apoptosis-related protein 
expressions by blocking mitogen-activated protein kinase 
(MAPK)-dependent nuclear factor-kappa B (NF-κB) acti-
vation pathway in mice (7). Overall, the anti-inflammatory 
properties of hydroxycinnamic acid (such as ferulic and 
p-coumaric acids) amides of serotonin were found to be 
superior to those of serotonin.

N-Feruloylserotonin (Figure 1), an alkaloid and po-
lyphenol, is an amide formed between serotonin and feru-
lic acid (feruloyl) widely distributed in many plants (8-
12), especially in safflower seeds; they contain abundant 
N-feruloylserotonin (37.06 mg/g) (6, 13). It was first iden-
tified as an anti-oxidant compound in safflower (14) and 
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Figure 1. Chemical structure of N-feruloylserotonin.
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inhibited proinflammatory cytokine production (15). In 
addition, serotonin (a simple indole alkaloid) is a physio-
logically active amine and a well-known neurotransmitter 
that regulates mood, sleep, and anxiety in mammals (16). 
Its hallucinogenic effect is well-known based on bioche-
mical, electrophysiological, and behavioral studies. Sero-
tonin also plays a role as an anti-oxidant by scavenging 
reactive oxygen species (ROS). Moreover, it has been re-
ported to show strongly in vitro anti-oxidant activity (17). 
It was also reported that serotonin reduced lipopolysac-
charide (LPS)-induced up-regulation of pro-inflammatory 
mediators and cytokines (18). The serotonin derivative 
N-feruloylserotonin, isolated from safflower seeds, was 
reported to have anti-inflammatory activities compared 
with those of serotonin (4). However, to the best of our 
knowledge, the mechanisms have not yet been studied in 
LPS-stimulated RAW 264.7 macrophages.

Inflammation is a defence mechanism against harm-
ful pathogens, such as bacteria, viruses, and fungi, and 
macrophages are key mediators of immune responses 
(19). During inflammation, activated macrophages secrete 
pro-inflammatory cytokines and mediators, including ni-
tric oxide (NO). NO plays a critical role in maintaining 
physiological homeostasis in the body. However, exces-
sive NO can react with the superoxide anion (O2

-) to form 
toxic peroxynitrite (ONOO-), which has been implicated 
in the progression of degenerative and inflammatory di-
seases, such as cancer, diabetes, cardiovascular diseases, 
and Alzheimer’s disease (20). LPS, a potent NO donor, 
is widely used to elucidate the possible mechanisms of 
NO-mediated oxidative stress and cell death. It has been 
reported that LPS induces phosphorylation of extracellu-
lar signal-regulated kinase (ERK) and c-Jun NH2-terminal 
kinase (JNK) in macrophages. The activation of signalling 
pathways involving these MAPK leads to the production 
of pro-inflammatory cytokines and mediators, such as NO 
and prostaglandin E2 (PGE2) (21). In addition, a high level 
of LPS causes the production of ROS in a variety of cell 
types (22). Moreover, sirtuin1 (SIRT1), a member of the 
sirtuin family, has been reported to be closely related to 
inflammatory pathways (23). Practically, the regulation of 
SIRT1-related pathways can help inhibit the progression 
of inflammation-related disorders. Therefore, the current 
study aimed to investigate the anti-inflammatory effect of 
N-feruloylserotonin and its mechanisms through the regu-
lation of SIRT1 using LPS-stimulated RAW 264.7 macro-
phages.

Materials and Methods

Materials
RAW 264.7 macrophages were obtained from Korea 

Cell Line Bank (KCLB, Seoul, Korea). Dulbecco’s modi-
fied Eagle’s minimum essential medium (DMEM), fetal 
bovine serum (FBS), penicillin, and streptomycin were 
obtained from Life Technologies Inc. (Grand Island, NY, 
USA). LPS (Escherichia coli, serotype 0111:B4) was pur-
chased from Wako Pure Chemical Industries, Ltd. (Osaka, 
Japan). Griess reagent, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT), and dimethyl sul-
foxide (DMSO) were purchased from Sigma Chemical 
Co. (St Louis, MO, USA). The enzyme immunoassay kit 
for PGE2 was obtained from R&D Systems (Minneapolis, 
MN, USA). 2′,7′-Dichlorofluorescein diacetate (DCFH-

DA) was obtained from Molecular Probes (Eugene, OR, 
USA). SIRT1, phosphor (p)-forkhead box protein O1 
(FOXO1), superoxide dismutase (SOD), catalase, NF-κB, 
inducible NO synthase (iNOS), cyclooxygenase-2 (COX-
2), ERK, p-ERK, JNK, p-JNK, and β-actin were pur-
chased from Santa Cruz Biotechnology, Inc. (Santa Cruz, 
CA, USA). Sulfanilamide, aprotinin, leupeptin, phenyl-
methylsulfonylfluoride (PMSF), dithiothreitol (DTT), and 
all other chemicals were purchased from Sigma Chemical 
Co. (St. Louis, MO, USA).

Cell culture
The RAW 264.7 cells were cultured at 37℃ in a CO2 

(5%) incubator in DMEM containing penicillin/streptomy-
cin (1%) and FBS (10%) and sub-cultured weekly using 
0.05% trypsin-ethylenediaminetetraacetic acid (EDTA) in 
phosphate-buffered saline.

Cell viability
After the cells had reached confluence, they were see-

ded at 5 x 104 cells per well into 24-well plates and incu-
bated for 2 h, and then treated with N-feruloylserotonin for 
24 h. RAW 264.7 cells were then stimulated with LPS (1 
µg/mL) for 24 h. The cells were incubated with 1 mL of 
MTT solution (5 mg/mL) for 4 h at 37℃, and the medium 
containing MTT was removed. Then, the formazan crys-
tals were dissolved in 1 mL of DMSO, and viable cells 
were quantified by measuring absorbance at 540 nm (24).

ROS measurement
The ROS scavenging activity was measured using 

DCFH-DA (25). RAW 264.7 cells were incubated with N-
feruloylserotonin for 24 h at 37℃, followed by treatment 
with LPS (1 µg/mL) for another 24 h. Fluorescence was 
read for 60 min, at wavelengths of 480 nm for excitation 
and 535 nm for emission, using a fluorescence plate reader 
(BMG LAB-TECH, Ortenberg, Germany).

NO measurement
The nitrite concentration in the medium was measured 

as an indicator of NO production. RAW 264.7 macrophages 
were cultured in a 60-mm cell culture dish, preincubated 
for 1 h with different concentrations of N-feruloylseroto-
nin, and then stimulated for 16 h with LPS. One-hundred 
microliter of each supernatant was mixed with the same 
volume of Griess reagent; absorbance of the mixture at 
540 nm was determined with an ELISA plate reader (26).

PGE2 measurement
RAW 264.7 macrophages were cultured in a 60-mm 

cell culture dish, pre-incubated for 1 h with different 
concentrations of N-feruloylserotonin, and then stimulated 
for 16 h with LPS. One-hundred microliter of supernatant 
of the culture medium was collected for the determination 
of PGE2 concentrations using an ELISA kit.

Western blot analysis
Cellular proteins were extracted from control and N-

feruloylserotonin-treated RAW 264.7 cells. Cells were 
collected by centrifugation and washed once with phos-
phate-buffered saline (PBS). The washed cell pellets were 
resuspended in extraction lysis buffer (50 mM HEPES pH 
7.0, 250 mM NaCl, 5 mM EDTA, 0.1% Nonidet P-40, 1 
mM PMSF, 0.5 mM DTT, 5 mM Na fluoride, and 0.5 mM 
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feruloylserotonin-treated RAW 264.7 cells showed higher 
expression levels.

p-FOXO1, MnSOD, and catalase expressions
As reported by Haigis and Sinclair (23), FOXO activa-

Na orthovanadate) containing 5 µg/mL each of leupeptin 
and aprotinin and incubated for 20 min at 4℃. Cell debris 
was removed by microcentrifugation, followed by quick 
freezing of the supernatants. The protein concentration 
was determined using the Bio-Rad protein assay reagent 
according to the manufacturer’s instructions. Forty micro-
grams of cellular protein from treated and untreated cell 
extracts were electroblotted onto a nitrocellulose mem-
brane following separation by 10% SDS-polyacrylamide 
gel electrophoresis. The immunoblot was incubated over-
night with a blocking solution (5% skim milk) at 4℃, fol-
lowed by incubation for 4 h with a primary antibody. Blots 
were washed three times with Tween 20/Tris-buffered 
saline (TTBS) and incubated with a 1 : 1000 dilution of 
horseradish peroxidase-conjugated secondary antibody for 
1 h at room temperature. Blots were again washed three 
times with TTBS and then developed by enhanced chemi-
luminescence (Amersham Life Science).

Statistical analysis
Data are expressed as the mean ± standard deviation 

(SD) (n=5). Data were compared using one-way ANOVA. 
P-values < 0.05 were considered significant. All analyses 
were performed using SPSS for Windows, version 23 
(SPSS Inc., Chicago, IL, USA).

Results

Cell viability
Cells were treated with different concentrations of N-

feruloylserotonin, and cell viability was determined after 
incubation by MTT. As shown in Figure 2, the survival 
rate was significantly reduced at 50 and 100 µM of N-fe-
ruloylserotonin. In subsequent experiments, therefore, the 
maximum concentration was limited to 25 µM of N-feru-
loylserotonin.

ROS levels
Activated macrophages have been reported to increase 

oxidative stress and reduce antioxidant enzymes that pre-
vent cell or tissue damage (25). Therefore, we measured 
whether N-feruloylserotonin prevents LPS-induced ROS 
production using the DCFH-DA assay. Figure 3 indicates 
that LPS-stimulated RAW 264.7 cells exhibited a higher 
ROS level, while ROS levels were markedly decreased by 
N-feruloylserotonin to almost the level in the non-LPS-
treated group.

NO and PGE2 levels
Since NO and PGE2 are products of iNOS and COX-2 

enzymes, respectively, we analyzed the effect of N-feru-
loylserotonin treatment on the production of NO and PGE2 
in LPS-activated RAW 264.7 cells. Significant concen-
tration-dependent suppression by N-feruloylserotonin of 
NO generation was observed in RAW 264.7 cells (Figure 
4A). Also, N-feruloylserotonin concentration dependently 
diminished the production of PGE2 in cells treated with 
LPS (Figure 4B).

SIRT1 expression
SIRT1 protects cells from FOXO1 and NF-κBp65-

mediated apoptosis in response to oxidative stress (23). As 
presented in Figure 5, the expression levels of SIRT1 were 
markedly reduced in LPS-treated RAW 264.7 cells, but N-

Figure 5. Effects of N-feruloylserotonin on SIRT1 expressions in 
RAW 264.7 macrophages treated with LPS. FS, N-feruloylserotonin. 
Data are the mean ± SD. Significance: *p<0.001 vs. LPS-treated cell 
values.

Figure 2. Effects of N-feruloylserotonin on cell viability in RAW 
264.7 macrophages treated with LPS. FS, N-feruloylserotonin. Data 
are the mean ± SD. Significance: *p<0.05, **p<0.001 vs. LPS-treated 
cell values.

Figure 3. Effects of N-feruloylserotonin on ROS levels in RAW 
264.7 macrophages treated with LPS. FS, N-feruloylserotonin. Data 
are the mean ± SD. Trolox is used as a positive control. Significance: 
*p<0.001 vs. LPS-treated cell values.

Figure 4. Effects of N-feruloylserotonin on NO (A) and PGE2 (B) 
levels in RAW 264.7 macrophages treated with LPS. FS, N-feruloyl-
serotonin. Data are the mean ± SD. Significance: *p<0.05, **p<0.001 
vs. LPS-treated cell values.
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tion leads to increased levels of FOXO target genes like 
antioxidant proteins such as SOD and catalase. Our expe-
rimental results also showed that the expressions of FOXO 
and its regulated Mn-SOD and catalase were significantly 
lower in the LPS-treated group, as compared with the non-
treated group. However, the reduced p-FOXO1 and its 
regulated antioxidant protein expressions were increased 
significantly in RAW 264.7 cells treated with N-feruloyl-
serotonin (Figure 6).

p-ERK and p-JNK expressions
The MAPK pathway is known to play an important 

role in the transcriptional regulation of LPS-induced iNOS 
and COX-2 expressions (27). To investigate the involve-
ment of the MAPK pathway in the inhibitory effects of 
N-feruloylserotonin on NO and PGE2 productions, the ex-
pression of MAPK (p-ERK and p-JNK) induced by LPS 
was evaluated in RAW 264.7 cells. As shown in Figure 7, 
N-feruloylserotonin (5, 10, and 25 µM) strongly inhibited 
LPS-induced activations of p-ERK and p-JNK in LPS-in-
duced RAW 264.7 cells.

p-NF-κBp65, iNOS, and COX-2 expressions
As ROS are involved in LPS-induced expression of 

proinflammatory genes such as p-NF-κBp65, iNOS, and 
COX-2 by macrophages (28), we tested whether N-feru-
loylserotonin treatment reduces expressions of these genes 
in LPS-activated RAW 264.7 cells. In our results, the ex-
pressions of inflammation-related proteins (p-NF-κBp65, 
iNOS, and COX-2) were significantly higher on stimula-
tion with LPS. The increased protein expression of NF-
κBp65 was decreased significantly in RAW 264.7 cells 
treated with N-feruloylserotonin. In addition, treatment 
with N-feruloylserotonin resulted in concentration-de-
pendent down-regulation of protein expressions involved 
in the inflammatory response. The reduced expression of 
iNOS was stronger than that of COX-2, indicating that the 
iNOS enzyme plays a key role in promoting the anti-in-
flammatory actions of N-feruloylserotonin (Figure 8).

Discussion

Alkaloids refer to a broad class of compounds, and 
alkaloids that contain a ring system, called indole, have 
been further classified as indole alkaloids. Many kinds of 
plant-based indole alkaloids have numerous biological ac-
tivities, which are relevant to the field of medicine, such as 
anti-bacterial, anti-malarial, anti-cancer, anti-diabetic anti-
cholinesterase, and anti-inflammatory activities (29). Most 
plant-derived indole alkaloid-type compounds have an in-
dole moiety linked to serotonin (30). N-Feruloylserotonin 
is a conjugated serotonin and unique polyphenol identified 
as the anti-oxidant constituent of safflower seeds. Chemi-
cally, it is an indole hydroxycinnamic acid amide formed 
between tryptamine (serotonin) and phenylpropanoid acid 
(feruloyl acid) (31). Moreover, its functional parent ferulic 
acid is a polyphenolic compound that is also well-known 
for its strong anti-oxidant properties. In addition, these 
serotonin derivatives have been reported to exhibit health-
beneficial effects including anti-inflammatory activities 
(8). Nevertheless, the mechanism of cellular biology is not 
well-established. To our knowledge, the anti-inflammatory 
role of N-feruloylserotonin in SIRT1-stimulated FOXO1 
and NF-κB signaling pathways is still unknown. The-

refore, we first performed a cell viability assessment of 
LPS-treated RAW 264.7 macrophages to examine the 
anti-inflammatory activity and mechanism involving feru-
loylserotonin. The data indicated that no toxic sign was 
observed up to 25 µM of N-feruloylserotonin, and thereby 
we investigated the effect on NO and ROS productions 
through regulation of the MAPK pathway in RAW 264.7 
macrophages against LPS. In addition, our data suggested 
that N-feruloylserotonin significantly reduces LPS-in-
duced activation of NO and PGE2.

   Macrophages are versatile cells, but it is as sentinels 
of the immune system that they show their full functio-
nal repertoire. They detect pathogenic substances through 
pattern-recognition receptors and subsequently initiate 
and regulate inflammatory responses using a wide range 
of soluble pro-inflammatory mediators (32). LPS is one of 
the most powerful activators of macrophages, and macro-
phages induced by LPS are known to be activated through 
the production of inflammatory mediators, such as NO 
and other free radicals. During inflammatory processes, 
large amounts of pro-inflammatory mediators, NO and 

Figure 6. Effects of N-feruloylserotonin on p-FOXO1 (A), MnSOD 
(B), and catalase (C) expressions in RAW 264.7 macrophages treated 
with LPS. FS, N-feruloylserotonin. Data are the mean ± SD. Signifi-
cance: *p<0.05, *p<0.001 vs. LPS-treated cell values.

Figure 7. Effects of N-feruloylserotonin on p-ERK (A) and p-JNK 
(B) expressions in RAW 264.7 macrophages treated with LPS. FS, 
N-feruloylserotonin. Data are the mean ± SD. Significance: *p<0.001 
vs. LPS-treated cell values.

Figure 8. Effects of N-feruloylserotonin on NF-κBp65 (A), iNOS (B), 
and COX-2 (C) expressions in RAW 264.7 macrophages treated with 
LPS. FS, N-feruloylserotonin. Data are the mean ± SD. Significance: 
*p<0.05, **p<0.01, ***p<0.001 vs. LPS-treated cell values.
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PGE2, are generated by iNOS and COX-2, respectively 
(33). Under inflammatory progression, iNOS and COX-2 
are significantly up-regulated, which promotes NO gene-
ration. Abnormalities in NO production by iNOS lead to 
cytotoxicity, which is implicated in the pathogenesis of 
various inflammatory disorders such as rheumatoid arthri-
tis. The present study showed that N-feruloylserotonin 
could improve inflammation by effectively reversing these 
inflammatory mediators in LPS-treated RAW 264.7 cells.

   Next, we focused on SIRT1 and its downstream si-
gnaling pathways to investigate the molecular mechanism 
of N-feruloylserotonin. SIRT1 has been recognized for 
its anti-inflammatory activity through the regulation of 
FOXO1 and NF-κB (23). FOXO1 and NF-κB transcrip-
tion factors play key roles in the onset and progression 
of chronic inflammatory disorders, such as rheumatoid ar-
thritis (34, 35). Therefore, they are considered to be a good 
target for anti-inflammatory medications. The activation 
of SIRT1 not only increases the expression of FOXO1 but 
also promotes the transcription of FOXO1 from the cyto-
plasm to the nucleus (36). Moreover, MnSOD and cata-
lase, major ROS scavengers, were upregulated by FOXO1 
to relieve oxidative stress (37). Our results demonstrated 
that N-feruloylserotonin increased the activation of SIRT1, 
promoting the expression and transcription of FOXO1, 
upregulating MnSOD and catalase and reducing ROS in 
LPS-induced RAW 264.7 cells.

   MAPK is a group of signaling molecules that may 
also play important roles in inflammatory processes. At 
least three MAPK cascades: ERK, JNK, and p38, are well-
described, and have been reported to differentially acti-
vate depending on the stimuli and cell types (27). Several 
studies demonstrated that activation of MAPK is signifi-
cant in the regulation of inflammation via controlling the 
activation of ROS. In the present study, we investigated 
whether N-feruloylserotonin inhibits ROS via disrupting 
MAPK signals, and non-toxically inhibits the inflamma-
tory response in RAW 264.7 macrophages.

   LPS rapidly phosphorylates ERK and JNK, leading 
to NF-κB activation in macrophages (38). This activation 
leads to an increase in the production of pro-inflamma-
tory mediators such as NO and PGE2 (39, 40). The activa-
tion of ERK is considered to be involved in LPS-induced 
macrophage responses, such as the increased production 
of pro-inflammatory cytokines and iNOS (41, 42). Moreo-
ver, LPS stimulation of RAW 264.7 cells rapidly activates 
the JNK pathway (43). Therefore, the activations of ERK 
and JNK are used as hallmarks of LPS-induced signal 
transduction in RAW 264.7 cells. To further confirm the 
mechanism of pro-inflammatory mediator inhibition by 
N-feruloylserotonin, we investigated the effects of this 
compound on p-ERK and p-JNK in RAW 264.7 cells, and 
it was found that p-ERK and p-JNK were suppressed by 
N-feruloylserotonin in a concentration-dependent manner. 
Even though other signals (ERK and JNK) are also signifi-
cantly decreased by N-feruloylserotonin, their expression 
was only slightly decreased by serotonin treatment. These 
findings indicate that N-feruloylserotonin can modulate 
MAPK pathways.

   Under the influence of specific stimuli such as LPS, 
NF-κB is phosphorylated and transported to the nucleus, 
where it regulates the expression of various inflammatory 
mediators and cytokines such as iNOS, COX-2, IL-1β, 
IL-6, IL-10, and TNF-α (44). The inhibition of NF-κB 

phosphorylation, regulated by activation of SIRT1, ame-
liorates inflammation by suppressing the expression of 
downstream signaling pathways (45). Our results suggest 
that N-feruloylserotonin increased the activation of SIRT1, 
suppressing NF-κB expression and its transcription and 
reducing the inflammatory mediators.

Conclusion
The present study revealed that N-feruloylserotonin, 

a major safflower seed anti-inflammatory agent, could 
ameliorate LPS-induced inflammation in RAW 264.7 
cells through the activation of SIRT1 to modulate SIRT1/
FOXO1 and SIRT1/NF-κB signaling pathways (Figure 9). 
Based on these results, N-feruloylserotonin may facilitate 
basic research using various cell lines and animal models 
of rheumatoid arthritis, supporting N-feruloylserotonin 
as a promising anti-inflammatory drug in pharmacologic 
theory. Moreover, it provided scientific evidence that N-
feruloylserotonin may be a major anti-inflammatory com-
ponent of safflower seeds.
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