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Abstract – In humans, 

2OV&  on-kinetics are noisy numerical signals that reflect the pulmonary oxygen exchange kinetics at the onset of exercise. They are 

empirically modelled as a sum of an offset and delayed exponentials. The number of delayed exponentials, i.e. the order of the model, is commonly 
supposed to be one for low-intensity exercises and two for high-intensity exercises. As no ground truth has ever been provided to validate these postulates, 
physiologists still need statistical methods to verify their hypothesis about the number of exponentials of the 

2OV&  on-kinetics especially in the case of high-

intensity exercises. Our objectives are first to develop accurate methods for estimating the parameters of the model at a fixed order, and then, to propose 
statistical tests for selecting the appropriate order. In  this paper, we provide, on simulated Data, performances of Simulated Annealing for estimating model 
parameters and performances of Information Criteria for selecting the order. These simulated Data are generated with both single-exponential and double-
exponential models, and noised by white and Gaussian noise. The performances are given at various Signal to Noise Ratio (SNR). Considering parameter 
estimation, results show that the confidences of estimated parameters are improved by increasing the SNR of the response to be fitted. Considering model 
selection, results show that Information Criteria are adapted statistical criteria to select the number of exponentials. 
 
 
Key words: 
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INTRODUCTION 

In the context of biomedical signal processing based 
on Bayesian methods, this paper presents theoretical 

results about modelling the oxygen uptake (2OV& ) on-
kinetics with empirical models. These results concern 
both the estimation of parameters for a given empirical 
model and the selection of its actual form in a finite set of 
hypothesised models. 

In humans, 2OV&  on-kinetics are signals that reflect 
the pulmonary oxygen exchange kinetics at the onset of 
exercise. Their study may provide insight in the 
metabolic behaviour of muscular cells and may be used 
for the evaluation of the physical fitness of a subject [19]. 
In order to provide help for the interpretation of these 

signals, 2OV&  on-kinetics are currently characterised with 
empirical models that are a weighted sum of an offset 
and delayed exponentials [3, 10]: 
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with A0, the offset, o, the order of the model, Am, tdm, τm, 
respectively the weight, the time delay, and the time 
constant of the exponential m = 1, …, o and U, the unit 
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of the model of order o is: 

{ }{ }ommmmo tdAA ,,10 ,,,
L== τθ  Eq. 2 

In practice, the obtained sequences of numerical data 
are noised by breathing irregularities and these noisy 
signals have a Signal to Noise Ratio (SNR) relatively 
low. Parameter estimation, i.e. the estimation of oθ , is 

currently based on the optimisation of statistical criteria 
computed from these noisy numerical Data called 
“observations”. In the general context, the parameter 
estimation of this kind of function presents several 
difficulties: 
1. The parametric function (see Eq. 1) is not 

continuously differentiable. 
2. Fitting a sum of exponentials to numerical Data is 

known to be an ill-conditioned problem [14] i.e. 
slight fluctuations in the observed data can result in 
very large fluctuations in the estimated parameters. 
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3. Constraints are imposed on the value of parameters 
due to physiological considerations (for example, 
weighted terms must be positive). 

Considering 2OV&  on-kinetics, the use of non-linear 
regression methods based on Gradient-Descent (GD) 
principle can be found in some papers [4, 5 & 10]. 
Nevertheless, GD based methods are not perfectly 
adapted to the mathematical properties of these above-
mentioned exponential functions, and may impair the 
estimation of the kinetic parameters. To estimate oθ  

alternative approaches may be proposed. In the 
following, we will present the stochastic optimisation 
method we have implemented in order to optimise the 
Likelihood function of the observations: the Simulated 
Annealing (SA) [9, 14]. In a recent paper [6], a 
comparison of the performances of a GD method and SA 
was presented on simulated Data with ground truth and 
real Data. The model used was double exponential, i.e. 
with o = 2 (see Eq. 1). The main conclusions of this 
study were: 
1. Compared to GD, SA improves the estimation of the 

parameters in the case of simulated Data. 
2. In the case of real Data, SA provides lower Residual 

Sum of Squares (RSS) of the difference between the 
raw data and the model than GD. 

3. The parameters of the second exponential are 
estimated with low accuracy.  
In this last paper [6], only one level of SNR was 

studied (it was around 20 dB). In the present paper, we 
provide performances of SA at various SNR, in the case 
of o = 1 and o = 2, by using a new set of simulated Data. 
This study is done in order to complete the previous 
paper and to verify that the estimation accuracy of the 
parameters of the second exponential is improved at high 
SNR (around 30 dB). 

In the literature, step-increases in power from light to 
moderate work rates (< 60% max2OV& ) are considered to 
be well described by the exponential model of first order 
(Eq. 1 with o = 1) while second-order model is used to 
describe transitions from light to higher work rates (> 
60% max2OV& ) [3] where max2OV&  represents the 
maximum oxygen uptake of a subject. The choice of the 
order of the model is sometimes argued by statistical 
approaches based on an F test [3, 11]. Nevertheless, no 
ground truth has ever been provided to check the 
pertinence of these approaches. We recall that, when 
using empirical models, the simplest model that 
describes the data satisfactorily is sought. The second 
purpose of the present paper is therefore to re-examine 
the question of model order selection by testing statistical 
criteria with appropriate properties: the information 
criteria (IC). 

 

METHODS 
Estimation problem and numerical Data 

The breath-by-breath values of 2OV&  are sampled 
with a variable sampling period as the respiratory 
frequency changes due to breath-to-breath irregularities, 
and also, due to the need for increasing the ventilatory 

flow rate. 2OV&  values can be viewed as a vector 

[ ]TNvovo ,21,2 ,,L=2vo , sampled over a time vector 

[ ]TNtt ,,0 L=t  (see Fig. 1). Each 1−− kk tt , k = 1, …, 

N, corresponds to the laps of time of a breath and the first 
value of 2vo  is obtained at t1. 2vo  is supposed to 
incorporate an underlying physiological response (i.e. the 
oxygen exchanges occurring at the alveolar site) plus an 

additive noise [ ]TNooo ee ,1, ,,L=e . 

 
Figure 1. Example of 

2OV&  on-kinetics of high intensity 

exercises. 
In the present context, Eq. 1 is supposed to describe 

this underlying 2OV&  response. Then, it is possible to write 

2vo  following the General Linear Model (GLM) of 

order o, o ≥ 1 [14]: 
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The estimation of oθ  (see Eq. 2) at fixed order o from 

2vo  is done classically by procedures that minimise the 
RSS between the experimental data points and the model 
[3, 4, 5, 6 & 11] i.e. the procedures are searching for the set 

time (s) 

vo2 (ml.min-1) 
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of parameters that minimises the Euclidean norm of eo 
(see Eq. 3). This minimisation must be done with the 
following physiological constraints on parameters: 

1. 0>oa 1, 

2. otdtd ≤≤L1 , 

3. oττ ≤≤< L10 . 

In the following, the noise [ ]TNooo ee ,1, ,,L=e  is 

supposed to be a realisation of a Gaussian white noise with 

variance 
2

,oeσ  for the model of order o. 

We provide now with the mathematical background 
for understanding our methods for estimating the model 
parameters and the order of the model. 

 
Parameter estimation based on Simulated Annealing (SA) 

Bayesian methods are based on the fundamental 
theorem proposed by Bayes. In the context of parametric 
estimation, Bayes’ theorem can be written [14]: 

( ) ( ) ( )
( )o

oooo
oo MP

MPMP
MP

2

2
2

,
,

vo

vo
vo

θθ
θ =  Eq. 4 

Mo represents the Data model of order o. 

( )oo MP ,2voθ  and ( )oo MP θ  are the posterior 

probability and the prior probability of oθ , respectively, 

conditionally to the observation vector, vo2, and the Data 

model of order o. ( )oo MP ,2 θvo  is the well-known 

likelihood function ( )2vo;oL θ  of the parameter sets at a 

fixed order o. ( )oMP 2vo  is called the Bayesian 

evidence of the observation vector. 
Maximising the likelihood function at fixed order is a 

well-known statistical criterion for estimating a parameter 
set called Maximum Likelihood criterion (ML): 

( )( )2;maxargˆ vooo L
o

θθ
θ

=  Eq. 5 

This criterion is known to be consistent, i.e. it is 
asymptotically unbiased and the estimation variance tends 
to zero asymptotically (maximal precision). At fixed order, 

( )oMP 2vo  is a constant value and if ( )oo MP θ  is 

supposed to be approximately uniform, we obtained: 

( ) ( )ooo MPL ,; 22 vovo θθ ≈  Eq. 6 

This result is of importance as the posterior probability 
is often easier to express literally than the other terms of 
Eq. 4. We present now the basis of SA, the algorithm we 
use for optimising ML criterion. 

SA belongs to the set of stochastic global methods of 
optimisation. SA is stochastic as it is based on the 
simulation of a Markov Chain (MC). Indeed a new state of 

                                                 
1 ao > 0 means that all the elements of vector ao are 
strictly positive. 

a MC is sampled each iteration using a probabilistic 
transition kernel that models the transition between two 
states. When sufficient iterations have been done (and so 
sufficient states of the Chain have been sampled) the 
probability law of the states converges if the transition 
kernel has some properties [9, 12 & 17]. 

In our case, a state is defined by a given oθ  set: from a 

random initial set 0,oθ , a new set of parameters io,θ  is 

sampled each iteration i of the algorithm. To estimate oθ  

with SA, the convergent probability law of the states above 
mentioned must be chosen uniform on the sets of 
parameters which provide global maxima of Eq. 5 and 
zero elsewhere. To this end, SA doesn’t optimise directly 
the Likelihood function but an energy function of the 
states, i.e. the model parameter values, which is 
proportional to the Likelihood function. This energy 
function can be defined as (see Eq. 6): 

( ) ( )( )ooo MpEn ,log 2voθθ −=  Eq. 7 

and has a Gibbs distribution [14]: 
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where Z is a constant of normalisation, B, the Boltsmann’s 
constant and T, the “temperature”. SA consists in sampling 

oθ  according to Eq. 8, with decreasing values of T. 

In the case of 2OV&  kinetics, ( )oo Mp ,2voθ  can be 

literally expressed when eo (see Eq. 3) is supposed to be a 
realisation of a white and Gaussian (and then 
independently and identically distributed (i.i.d.)) noise 
[14]: 
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Eq. 9 

According to Eq. 6, 7 & 8, the states that maximise 
( )2vo;oL θ  are the states of lowest energies. Then, 

minimising ( )oEnθ  provides ML estimation of oθ . For 

the special case T = 0, the only possible states are the ones 
that produce the global minima of the energy (see Eq. 8). 
Therefore, the Gibbs distribution at T = 0 is the desired 
convergent probability law above mentioned. 

To iterate SA, two main approaches exist in order to 
sample a Markov Chain with transition kernel which has 
appropriate properties: the Metropolis-Hastings algorithm 
and the Gibbs sampler. To estimate oθ , we use 

Metropolis-Hastings algorithm (for implementation details 
see Appendix). 

Now, let see how selecting an order. 
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Order selection based on Information Criteria (IC) 
In the present case, the general form of IC is [2]: 

( ) ( ) ( )( )1;ˆlog2 2 ++−= oo NCLoIC θθ vo  Eq. 10 

where oθ̂  is the ML estimation of oθ  at order o, | oθ |, the 

cardinal of oθ , and C(N) is a term which depends on the 

size of the observations. The value of IC at a given order 
corresponds to the opposite of the optimal value of 
logLikelihood function with an added penalisation 

( )( )1+oNC θ . This penalisation in the minimisation 

procedure against o should prevent over parameterisation 
as it becomes higher when the order of the model 
increases. In our context, IC seem appropriate as they 
provide a model which represents a compromise between 
a model with low complexity and the fully description of 
the Data. This is the basis for fitting an empirical model to 
Data as it has been previously recalled in introduction. 

From the definition given in Eq. 10, the order selection 
between o = 1 and o = 2 using IC (see Eq. 10) is done by 
the following procedure: 

1. Compute 1̂θ  with SA. 

2. Compute 2̂θ  with SA. 

3. Compute ( )1IC  and ( )2IC . 

4. ( )oICo
o 2,1

minargˆ
=

= . 

We now provide the literal form of IC in the case of 
GLM and white and Gaussian assumption for noise. The 
likelihood function can be expressed as follows: 
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Using the log-likelihood function, the previous 
equation becomes: 
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Order selection using IC can finally be written as 
follows (see Eq. 10 & 12): 

( )( )( )1ˆlogminargˆ 2
,

2,1
++=

=
ooe

o
NCNo θσ  Eq. 13 

as we removed all constant values of Eq. 12 in Eq. 13. To 

estimate o in the case of 2OV&  kinetics, we use a particular 

IC called φβIC with 

( ) ( ) ( )( )NNNCNC loglogβ
φβ

== , 0 < β < 1 [8]. 

In the part Results and Discussion, we will discuss the 
choice of an appropriate value of β using simulated Data. 

 

MATERIALS 
Data 

Simulated 
2OV&  responses were generated in order to mimic first-

order and second-order exponential kinetics over a time period of 8 
minutes. For o = 1, the set of parameters was comparable to the set used by 
Lamarra & al. [10]: A0 = 1500, A1 = 2000, td1 = 15, and τ1 = 35. For o = 2, 
it is recognized that the 

2OV&  time course described by the second 

component of Eq. 1 either delays the attainment of a steady state or makes 

2OV&  increase inexorably until the end of the exercise (or until 
max2OV&  is 

reached) [3, 4 & 5]. Therefore, both kinds of time course were simulated. 
The first set of parameters leads to a steady state over the duration of the 
exercise: A0 = 1500, A1 = 2000, td1 = 15, τ1 = 25, A2 = 600, td2 = 180, and 
τ2 = 80; the second set uses a high τ2 value in order to simulate a drift in 

2OV&  over the entire duration of exercise: A0 = 1500, A1 = 2000, td1 = 15, 

τ1 = 25, A2 = 600, td2 = 180, and τ2 = 320. 
In order to test the sensitivity of parameter estimation and order 

selection methods against noise, the 3 reference kinetics were noised with 
different levels of white and Gaussian noise. In previous articles [10 & 15], 
this noise has been frequently quantified by the coefficient of variation 
(CV%) of the breath-by-breath data i.e. the ratio between the standard 
deviation of the 

2OV&  fluctuations and the magnitude of the response: 

1

,100%
A

CV oeσ
×=  

Eq. 14 

Four values of CV% were used: 20, 15, 10 and 5. These different levels 
of signal-to-noise ratio (SNR) may be expressed in a more conventional 
unity (i.e. in decibel, dB) by the following formula: 
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10dB log10  Eq. 15 

The numerator and the denominator of Eq. 15 represent the energy of 
the signal without noise and the energy of the noise (see Eq. 3), 
respectively. For each value of CV%, 40 stochastic vectors of noise were 
generated per set of parameters in order to mimic the condition of repetitive 
exercise testing. So, we had 160 simulated responses with o = 1 and 320 
simulated responses with o = 2 (80 per CV%). Table 1 provides the 
correspondence values between CV% and SNRdB obtained on the whole 
simulated Data. 

 
Table 1. Values of mean SNRdB against CV% for simulated 
Data with o = 1 (model with 1 exponential) and o = 2 (models 
with 2 exponentials). 

 CV% SNRdB 
o = 1 20 18,05 
 15 20,52 
 10 24,04 
 5 30,06 
o = 2 20 18,93 
 15 21,41 
 10 24,96 
 5 30,96 

 
Statistical Analysis 

In order to evaluate the performances of the parameter estimation at 
various SNR, each simulated response was modelled with the model order 
corresponding to the ground truth. Then, for each parameter, the sensitivity 
of estimation was evaluated by two classical indices: 
1. The bias (b) as an index of accuracy of the estimation. It is the mean 

of the estimation errors, i.e. the mean difference between the reference 
value and the estimates. 
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2. The standard deviation of the estimation errors (
oe,σ̂ ) as an index of 

the precision of the estimation. 
In order to evaluate order selection performances at various SNR, each 

signal was fitted with both models (o = 1 and o = 2). Then, the sensitivity 
of order selection was evaluated by expressing: 
1. The percentage of correct order selection for the simulated responses 

generated with the single exponential model. 
2. The percentage of correct order selection for the simulated responses 

generated with the double exponential model. 
These percentages were expressed depending on the level of noise 

and the level of β. 

RESULTS AND DISCUSSION 

Performances of SA 
Fig. 2 and Fig. 3 provide results of estimation 

performances for model with o = 1, and for models with 
o = 2, respectively. These figures show biases and 95% 
confidence intervals of the data for each parameter. The 
lower CV% (higher is SNRdB – see Tab. 1), the higher the 
confidence for each parameter. Equivalent performances 
are obtained for A0, td1 and τ1 whatever the model order 
and CV%. At CV% = 5 compared to CV% = 20, the 
confidence intervals are ±6 versus ±25 mlO2.min-1 for A0 
(i.e. about ±0.35% versus ±1.0% of the reference 
magnitude), and ±1.5 s versus ±7.5 s for td1 and τ1 (i.e. 
about ±7.5% versus ±35% of the respective reference 
times), respectively. In accordance with our previous 
paper [6], these results reinforce the need for improving 

the SNR of the raw data before modelling 2OV&  kinetics. 
This could be done by improving the algorithms used to 

compute breath-by-breath 2OV&  data [7]. 
Concerning the performances of the parameter 

estimation for the single exponential model (o = 1), a 
direct comparison is possible with the results published 
by Lamarra & al. [10] as their methodology for 
generating simulated data is identical to ours. The 
difference between both studies concerns the estimation 
algorithm: SA in the present one; a non-linear algorithm 
based on Gradient descent method in the study by 
Lamarra et al. [10] (and their study only tested the 
estimation of td1 and τ1). Although we originally 
developed SA for parameter estimation of double 
exponential model [6], this comparison shows, in the 
case of a single exponential model, that SA, compared to 
a GD method, tends to improve the parameter 
confidences: at CV% = 20, the 95% confidence interval 
of td1 and τ1 is about ±10 s with GD method while it is 
reduced to about ±6 s with SA. At CV% = 5, the 95% 
confidence interval of td1 and τ1 is about ±4 s with GD 
method while it is reduced to about ±1.5 s with SA. We 
hypothesise that this improvement in parameter 
estimation is due to the fact that SA is more adapted to 
the mathematical properties of the functions to be 
optimised (i.e. the exponential functions – see 
introduction). 

Concerning the performances of the parameter 
estimation for the double exponential model (o = 2), a 
direct comparison of the present results at CV = 20% is 
possible with the results of our previous study [6]. A 
trend towards a smaller confidence interval for each 
parameter is observed in the present study. As an 
example, the confidence intervals are ±450 versus ±1800 
mlO2.min-1 for A2, ±110 versus ±183 s for td2 and ±400 
versus ±1470 s for τ2 in the present study compared to 
the previous one, respectively. This may be due to the 
fact that the present simulated data contain about twice 
more samples than the signals of the previous study. 

As we hypothesised in our previous study, the 
present results demonstrate that an improvement in SNR 
largely reduces the confidence intervals of the estimated 
parameters. Unfortunately, the confidence intervals for 
the second-exponential parameters (A2, td2 and τ2) 
remain excessively large even at the highest SNR (i.e. 
CV%= 5). As an example, the confidence intervals 
remains at ±57 mlO2.min-1 for A2 (i.e. ±10% of the 
reference magnitude), ±19 s for td2 (i.e. ±10% of the 
reference magnitude) and ±61 s for τ2 (i.e. ±47% of the 
reference magnitude, in average). Therefore, this limits 
the interpretation of these parameters. We suppose that 

the different shapes of 2OV&  response influence the 
confidence intervals of the estimated parameters. More 
precisely, one of both sets of reference parameters we 

employed to simulate data leads 2OV&  to increase 
linearly rather than asymptotically over the exercise 
duration corresponding to the second-exponential 
component. Then, the A2/τ2 ratio may be seen as a good 
approximation of the slope of a linear function describing 

this increase in 2OV& . As infinity of values for both 

parameters may produce this ratio, this kind of 2OV&  
time course tends to increase the confidence intervals of 
the second-exponential parameters. 

 
Model order selection 

Fig. 4 and 5 show the evolution, against both β and 
SNR, of percentages of correct model order selection for 
models with o = 1 and o = 2, respectively. The first 
information brought by these figures is that the higher β, 
the lower the obtained order of the model. Consequently, 
when using the single-exponential model as the reference 
response, 100% of correct model order selection is 
obtained for β > 0.15; when using the double-
exponential model as the reference response, 100% of 
correct model order selection is obtained for β < 0.3. In a 
general context, a range of β values equalled to [0.15, 
0.3] allows us to select the correct model order whatever 
the SNR (5 ≤ CV% ≤ 20). 
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In the literature, different penalisation terms C(N) 
(see Eq. 10 & 13) than the formulation we used (φβIC 

using ( ) ( )( )NNNC loglogβ
φβ

= , 0 < β < 1) have 

been proposed. The main penalisations found in 
literature are: 
1. ( ) 2AIC =NC , Akaike IC (AIC) [1] 

2. ( ) ( )NNC logBIC = , Bayesian IC (BIC) [18] or 

Minimum Description Length (MDL) [16]. 
 

About φβIC, β can be chosen between βmin and βmax [13]: 
( )

( ) maxminmin 1
log

loglog ββββ =−≤≤=
N

N
 Eq. 16 

Let’s notice that it is also possible to compute AIC and 
BIC from φβIC. Indeed, two values of β allow the 
computation of the penalisations of AIC (βAIC) and BIC 
(βBIC) from ( )NC

βφ : 

( ) ( )
( )N

N

log

logloglog2log
AIC

−=β  

( ) ( )
( )N

NN

log

logloglogloglog
BIC

−=β  

Eq. 17a 

Eq. 17b 

When N > 15, maxminBICAIC ββββ <<< . Fig. 4 

and 5 show the effect of these penalisation values on the 
model order selection. It appears that: 

( ) ( )maxminBICAIC ˆˆˆˆ ββββ
ββ φφ =≥=≥≥ oooo  Eq. 18 

with ôIC the estimated order using a given IC. This 
hierarchy was predictable because the higher the 
penalisation, the lower the complexity of the selected 
model. From these different IC, only two are appropriate 
to select the correct model order in the present case: BIC 
and φβIC with β = βmin because both are included in the 
range [0.15, 0.3]. 

These results clearly show that the selection of the 
model order (and so the choice of the adapted 

penalisation term in order to describe 2OV&  kinetics 
appropriately) is a complex mathematical problem. 
Therefore, this questions the validity of another statistical 
approach used in previous physiological studies for the 
same goal [3, 11]. This method retains the second-order 
model if the decrease in RSS is sufficient to offset the loss 
in degrees of freedom associated with the increased 
number of model parameters as determined by an F test. 
Table 2 shows the percentages of correct model order 
selection against both CV% and the order of the 
reference model, using this method. It is well apparent 
that it reacts like Information Criteria incorporating small 
β values and penalisation terms: comparable results are 
obtained with 0 < β < 0.1. Then, this approach tends to 
overestimate the model order whatever SNR and may 

have led investigators to erroneous results in previous 
studies. 

 
Table 2.  Model order selection results using F test. 

 
 CV% o = 1 o = 2 average 
P=0,05 20 87,5 100 93,75 
 15 82,5 100 91,25 
 10 95 100 97,5 
 5 92,5 100 96,25 
P=0,025 20 92,5 100 96,25 
 15 90 100 95 
 10 97,5 100 98,75 
 5 95 100 97,5 
P=0,01 20 97,5 100 98,75 
 15 97,5 100 98,75 
 10 100 100 100 
 5 97,5 100 98,75 
 

CONCLUSION 

The first conclusion of the present paper is that, when 
using SA, the confidence of the estimated kinetic 

parameters, for exponential models describing 2OV&  
kinetics (o = 1, 2), is proportional to the SNR of the fitted 

2OV&  response. Nevertheless, concerning the second-
order model, the confidence intervals of the second-
exponential parameters remain excessively large to allow 
their interpretation. This may be due to the different 

tested shapes of 2OV&  responses, and then further studies 

are needed in order to precise which shapes of 2OV&  
response lead to confidence intervals small enough to be 
interpreted. 

The second conclusion of the present paper is that the 
selection of the model order (o = 1, 2) using IC needs to 
use an appropriate penalisation term i.e. a β value 

( )NC
βφ  in the range [0.15, 0.3] in order to obtain 

100% of correct model order selection. Comparatively, 
the approach based on an F test and previously used in 
physiological studies leads to an overestimation of the 
model order. This questions the validity of some 
previous published results. 

 

APPENDIX 

Implementation of SA in the case of o = 2 
• Initialisation: 

o i = 0, T = T0. 
o Sample an initial state 

[ ]Ttdtd 0,20,20,10,10 ,,, ττ=s  that defines a 

matrix 0G  (see Eq. 3). 0,oθ  is then computed 

from 0s  using a least-squares estimation of 

0a , ( ) 2voGGGa TT
0

1

000

−
= . 
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o Resample 0s  until all the elements of 0a  are 

positive, according to physiological constraints 
(see Methods-Estimation problem and 
numerical Data). 

o { }{ }
2,10,0,0,0,00,vo ,,,

2 =
=

mmmm tdAA τθ . 

• Step 1: 
o Produce a new state using a random 

perturbation ς : ςss += ip . 

o Compute pG  and 

( ) 2voGGGa T
PP

T
PP

1−
= . 

o Resample ps  from is  until all the elements of 

pa  are positive. 

o Then, make the state proposal 

{ }{ }
2,1,,,,0, ,,,

=
=

mpmpmpmppo tdAA τθ  for 

1, +ioθ . 

• Step 2: 
Compute the acceptance ratio { }r,1min=α  with 

( )( ) ( )
( )( ) ( )pii

ipp

TEnp

TEnp
r

,vo,vo,vo

,vo,vo,vo

222

222

θθθ

θθθ
= . 

T is the transition kernel: 

( )
( )

( ) ( )
( ) ( )

( )
( )∏∏

==

==
2

1 ,

,
2

1 ,,

,,

,vo,vo

,vo,vo

22

22

m im

pm

m imim

pmpm

pi

ip

p

p

ptdp

ptdp

T

T

τ
τ

τ
τ

θθ

θθ

since we assume uniform probability laws for time 
delays. 

State 1, +ioθ  has a probability α  to be equal to po,θ  

and 1-α  to be equal to io,θ . So, 

If 1≥r , 
1=α  and poio ,1, θθ =+ . 

Else 
sample a realisation x of a random variable 

[ ]1,0~ UX  where [ ]baUX ,~  signifies that 

X follows a continuous uniform law on [a, b]. 
If α≤x ,  

poio ,1, θθ =+ , 

Else ioio ,1, θθ =+ . 

• Step 3: 
If T > Tmin 

Decrease T. i = i + 1. Return to step 1. 
Else (T = Tmin) 

ioo ,
ˆ θθ =  and stop the iterations. 

Hence oθ̂  obtained, oe  is estimated as follows: 

ooo aGvoe 2 ˆˆˆ −=   

Estimated RSS can be directly computed as the sum 
of the elements of oê . 

The decreasing scheme of T, i.e. the annealing 
schedule, is of importance. If it is sufficiently low, the 
convergence to the global minimum is insured. Of 
course, it is impossible to decrease T until 0 and 
annealing schedules that guarantee convergence are 
intractable because they take a huge amount of time. 
This is the reason we stop the algorithm to a minimum 
temperature Tmin reached in a finite number of iterations. 
To estimate oθ  with SA algorithm, the configuration of 

B, T0, Tmin, the temperature decreasing scheme, the 
sample laws of initial state and state proposal po,θ  are 

described in the following: 

• 
3

2

−
=

N
B  equal to the inverse of the power of 

Eq. 8 in the case o = 2. 
• 1,00 =T  and 0,000001min =T  in order to have 

coherent values for 
( )( )
( )( )

( ) ( )









 −
−=

BT

EnEn

Enp

Enp ip

i

p ,vo,vo

,vo

,vo 22

2

2 exp
θθ

θ
θ

 and so, for α  (see step 2 of the algorithm). 
• T is decreased with a geometric annealing schedule: 

0TT i
i λ= . The number of iterations Imax has been 

chosen equal to 1500000 and 

( )








=

max

0minlog
exp

I

TTλ . 

• sample laws: for the time values, td1 and td2, we use 
uniform laws of the form [ ]maxmin ,~ valvall Utd , 

l = 1, 2, and for scale parameters, 1τ  and 2τ , 
uniform laws for logarithm [14]: 

( ) ( )( )
max

maxminminmax

min

if0

iflog1

if0

val

valvalvalval

val

p

l

ll

l

l

>
≤≤

<
=

τ
ττ

τ
τ

, l = 1, 2. Then, for the initial state s0, valmin and valmax 
values for each parameter are: 

o 0,1td : valmin = -50 and valmax = 50. 

o 0,1τ : valmin = τmin and valmax = τmax. 

o 0,2td : valmin = 0,1td  and valmax = tmax. 

o 0,2τ : valmin = 0,1τ  and valmax = τmax. 

and for ps : 

o ptd ,1 : if td1,i - 2,5 < -50, valmin = -50, 

else valmin = 5,2,1 −itd , 

if td1,i + 2,5 > 50, valmax = 50, 
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else valmax = 5,2,1 +itd . 

o p,1τ : if min,1 20 ττ <−i , valmin = τmin, 

else valmin = 20,1 −iτ , 

if max,1 20 ττ >+i , valmax = τmax, 

else valmax = 20,1 +iτ . 

o ptd ,2 : if td2,i - 5 < td1,p, valmin = td1,p, 

else valmin = td2,i – 5, 
if td2,i + 5 > tmax, valmax = tmax, 
else valmax = td2,i + 5. 

o p,2τ : if pi ,1,2 20 ττ <− , valmin = τ1,p, 

else valmin = τ2,i – 20, 

if max,2 20 ττ >+p , valmax = τmax, 

else valmax = τ2,i + 20. 
 

These values have been chosen to obtain coherent 
values of acceptance ratio, to visit many states at the 
beginning of iterations and to converge at the end of 
iterations. 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Biases and 95% confidence intervals of the estimated 
parameters for a single exponential model (o = 1) expressed as a 
function of CV% (or SNRdB see Tab. 1). Top to bottom: offset A0 
(mlO2.min-1), parameters of the exponential: amplitude A1 
(mlO2.min-1), time delay td1 (sec), time constant τ1 (sec).
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Figure  3. Biases and 95% confidence intervals of the estimated parameters for double exponential models (o = 2) expressed as a function of CV% (or 
SNRdB see Tab. 1). Top to bottom, left to right: offset A0 (mlO2.min-1), parameters of the 1st exponential: amplitude A1 (mlO2.min-1), time delay td1 (sec), time 
constant τ1 (sec), parameters of the 2nd exponential: amplitude A2(mlO2.min-1), time delay td2 (sec), time constant τ2 (sec). 
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Figure  4. Percentages of correct model order selection for the simulated responses with o = 1. The percentages are expressed as a function of CV% (or 
SNRdB see Tab. 1) and for β values varying from 0 to about βmax. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure  5. Percentages of correct model order selection for the simulated responses with o = 2. The percentages are expressed s a function of CV% (or SNRdB 
see Tab. 1) and for β values varying from 0 to about βmax. 
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