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Abstract – Experiments of in vitro angiogenesis are important tools for studying both the mechanisms of formation of new blood 
vessels and the potential development of therapeutic strategies to modulate neovascularisation (e.g., screening of new 
pharmacological molecules). One of the most frequently used angiogenesis assays is the culture of endothelial cells on a 
reconstituted basement membrane named Matrigel, since the cells constitute a capillary-like network which can be quantified by 
image analysis. In this paper, a global, robust and fully automated methodology is proposed to segment and quantify in vitro 
endothelial cell networks from greyscale images using mathematical morphology operators. After extracting the established cell 
network by means of a top-hat transformation and separating the tubular structures and the cell aggregates by size and shape an 
interpolation algorithm yields a reconstituted closed network. Using these image data results different kinds of quantitative 
parameters are calculated: size/shape, morphological distribution, spatial organisation, etc. In this paper, we have established an 
automatic quantitative analysis to evaluate a modulator effect of a sulphated exopolysaccharide on FGF-2-induced in vitro 
angiogenesis, according to different parameters. Experimental results allow us to draw a discussion of the pertinence of the 
alternative morphological parameters to evaluate the characteristics and behaviour of cell cultures.  
 
Key words: endothelial cells, angiogenesis, quantitative image analysis, mathematical morphology, granulometry, top-hat 
transformation, watershed, morphological wavefront  

 

INTRODUCTION 

Angiogenesis, formation of new blood vessels 
from pre-existing ones, is a complex process involved 
in embryonic implantation (Sherer and Abulafia, 
2001, 31), in development tissue (Martin et al., 1998, 
21) and in wound repair (Li et al., 2003, 20). This 
process also contributes to the dissemination of solid 
tumor growth via metastasis formation or to the 
development of angioproliferative diseases (psoriasis, 
diabetic retinopathy, rheumatoid arthritis) (Folkman, 
1995, 10). Endothelial cells constitute a monolayer 
lining the luminal surface of blood vessels and play a 
central role in angiogenesis process. Under an 
angiogenic factor effect, activated endothelial cells 
degrade the underlying basement membrane, migrate 
into surrounding vascular tissue toward the 
angiogenic factor and proliferate to increase the 
length of neo-vessels formed after cell differentiation 
(Kutryk and Stewart, 2003, 18). 

Many in vitro and in vivo assays have been set up 
for the study of angiogenesis (Auerbach et al., 
2003,2). Several candidate pro-angiogenic or anti-
angiogenic factors have been identified by these 
assays which allow the study of their biological role 
or to test their potential therapeutic effect. In vitro  

angiogenesis assays make it possible to interpret 
results in a shorter time at a lower cost and system  

complexity than in vivo assays (Vailhé et al., 
2001,32). Consequently, the need for quantitative 
angiogenesis assays has been growing in recent years 
(Donovan et al., 2001, 9). Among in vitro 
angiogenesis assays the most frequently used, the 
reconstituted basement membrane (Matrigel), is a fast 
angiogenesis assay that could be accompanied by an 
accurate and fast quantification analysis. In the 
contact with Matrigel, endothelial cells undergo 
morphological differentiation: they assume bipolar 
cytoplasmic elongations and spindle shapes, align and 
associate with others to form tubular-like structures. 
They can also clump together into cell aggregates and 
thus form anastomoses or branch points characterized 
by interconnecting segments. At the end of this cell 
differentiation step (about 18-24hrs) and according to 
experimental conditions, these tubular-like structures 
may organize into a capillary-like network. It has 
been shown that endothelial cells exert tractions on 
the matrix that generate planar guidance pathways 
used by cells which form a polygonal-like geometric 
network (Korff and Augustin, 1999, 17) (Davis and 
Camarillo, 1995, 8). 
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Fig. 1(a) shows the example of a culture of 
endothelial cells in a Matrigel support.  
The image (b) corresponds to the preparation after 
fixing and  staining with Giemsa and illustrates the 
different morphological phenomena observed: cell 
aggregates, interconnecting segments, branch points 
and capillary-like network structure. By these 
regularities, it is possible to develop automated 
quantitative analysis based on image processing 
techniques. 
 

 
Figure 1. (a) Example of endothelial cells culture in 
Matrigel support. (b) Example of image to be processed 
(culture cells after fixing and staining) illustrating the 
different morphological phenomena of the tubular-like 
cell network. 

 
From fig. 1 (a) and (b), the tubular-like 

structures formed on Matrigel before and after 
staining show that bi-dimensional morphometric 
parameters such as size/shape parameters, 
morphologic distribution of length, geodesic 
parameters are not modified. However, the depth of 
the Matrigel is affected by dehydration step 
towards a reduction. Compared to bi-dimensional 
geometric and morphologic parameters, this three-
dimensional parameter is negligible and does not 
affect the accuracy of the estimated morphometric 
values. The interest of the staining is just to make 
easier the segmentation and quantification of the 
structures. 

In this paper, a global, robust and fully 
automated methodology is proposed to segment 
and quantify in vitro endothelial cell networks from 
greyscale images using mathematical morphology 
operators. The complexity of the algorithms is 
relatively low and their execution is fast (i.e. taking 
less a minute by image). In particular, we have 
established an automatic quantitative analysis to 
evaluate a modulator effect of a sulphated 
exopolysaccharide on FGF-2-induced in vitro 
angiogenesis (23,24), with respect to the different 

parameters. Experimental results allow us to draw a 
discussion of the pertinence of the alternative 
morphological parameters to evaluate the 
characteristics and behavior of cell cultures. 
State-of-the-art on the quantification of angiogenesis 
assays 

Quantification of angiogenesis assays has been 
proposed in literature according to different 
approaches used to compare the morphological and 
geometric features of several types of cells and types 
of supports. Most of these methods are manual 
(Nicosia and Ottinetti, 1990, 27) (Brown et al., 1996, 
6) or semi-automatic (Donovan et al., 2001, 9); these 
techniques are however slow, annoying and 
subjective. Several previous studies have reported 
attempts to use automated image analysis in order to 
improve the quantification of angiogenesis. The main 
problem has commonly been the segmentation of the 
cell network in the grey level images. In (Nissanov et 
al., 1995, 28) an automatic approach for segmentation 
of vessels in the rat aortic ring assay of angiogenesis 
is presented, but the quantification is relatively 
simple. A more elegant and interesting approach 
using mathematical morphology is proposed in 
(Blacher et al., 2001, 4) which has been used for 
advanced studies (Hajitou et al., 2002, 15). In 
(Gidolin et al., 2004, 13) a topological analysis using 
a classical skeleton and a fractal analysis to evaluate 
the complexity of a network is proposed. 

Still, none of these solutions seem to be robust 
enough to deal with a vast variety of initial images as 
contrast, noise level and lighting conditions may 
greatly vary from one case to the other. While lot of 
work remains to be done on the definition of useful 
quantitative parameters which allow the interpretation 
of the results. Image processing in general (Master et 
al., 1990, 22) and mathematical morphology in 
particular (Laing et al., 1981, 19) (Vicent et Master, 
1992, 33) have already been successfully applied to 
study the in vivo endothelial cells of the cornea; 
however the problems are very different, since the 
established cell network is homogenously constituted 
as an uniform cellular tissue. 

Our purpose here is precisely to propose new 
ways to quantify robustly for instance the spatial 
progression of the vascular network, the topological 
features of the network, etc. 

 
MATERIALS AND METHODS 

In this section are included all the details concerning the 
biological assay (material and methods) and the acquisition of the 
microscopic field images. 

 
Biological material and preparation 
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Medium M199 (containing Hank’s salts, L-glutamine and 
25mM HEPES), RPMI 1640 medium, antibiotics (penicillin and 
streptomycin), L-glutamine, Hank’s balanced salt solution with 
phenol red (HBSS), phosphate buffered saline (PBS), HEPES, 
0.05% trypsin/0.02% EDTA, and versene were from Gibco BRL 
(Cergy-Pontoise, France); HBSS without phenol red was from 
Eurobio (Ulis, France); fetal bovine serum (FBS) was from 
ATGC (Noisy-le-Grand, France); collagenase A was from 
Boehringer (Mannheim, Germany); and gelatin was from Sigma 
Chemical Co. (St Louis, MO, USA). Growth factor-reduced 
Matrigel (without detectable FGF-2) was from Becton Dickinson 
Labware (Bedford, MA, USA). Human recombinant basic 
fibroblast growth factor (FGF-2) was from Valbiotech (Paris, 
France). 

Exopolysaccharide was produced and secreted by a 
mesophilic strain (Alteromonas infernus) found in deep-sea 
hydrothermal events. This polysaccharide was purified and 
depolymerised according to the method described by Guezennec 
et al. (1998). Added to the radical depolymerization, an over-
sulfation step was performed. So, this sulfated exopolysaccharide 
derivative is a homogenous fraction with an average molecular 
weight of 24000g/mol, as determined by analytical high-
performance size-exclusion chromatography. This fraction is 
mainly composed of 31% neutral sugars (glucose, galactose), 
19% uronic acids (glucuronic acid, galacturonic acid) and of 40% 
SO3Na. 

 
Cell culture 

Endothelial cells were isolated from human umbilical 
cords (HUVEC) by enzymatic digestion with 0.1% 
collagenase according to the method described by Jaffe et al 
(1973, 16) and modified by Giraux et al (1998, 12). HUVEC 
were cultured in M199 and RPMI medium (v/v) supplemented 
with 20% fetal bovine serum, 2mM L-glutamine, 10mM 
HEPES, 2.5µg/ml fungizone, 80units/ml penicillin and 
80µg/ml streptomycin. They were seeded into flasks 
precoated with 0.5% gelatin and incubated in humidified 5% 
CO2-air at 37°C. Endothelial cells were identified by their 
typical cobblestone morphology. All experiments were 
performed with HUVEC at a second passage. 

 
Endothelial cell treatment 

HUVEC (3x105 cells) were seeded on 0.5% gelatin-
covered 6-well plates. After 24hrs, the medium was 
renewed by a medium containing the sulfated 
exopolysaccharide at concentrations varying from 0.1 to 
100µg/ml with FGF-2 (5ng/ml). The conditioned medium 
(with or without polysaccharide and FGF-2) was renewed 
after 2 days of treatment. After 72hrs, the cells were 
detached from the well with versene -0.01% collagenase, 
then they were counted with a hematocytometer to be used 
for tubular-like structures formation assay. 
 
Matrigel tubular-like structures formation assay 

Forty-eight-well plates were coated with 150µ l 
undiluted growth factor-reduced Matrigel (10mg/ml, 
Becton Dickinson, San Jose, CA), which was allowed to 
gel for 1hr at 37°C. Untreated HUVEC or treated HUVEC 
were suspended in medium containing only 5% FBS 
(without FGF-2 or polysaccharide) and seeded on 
Matrigel (3 x 104 cells/well). After 18hrs incubation, the 
cells were then fixed with 1.1% glutaraldehyde. Matrigel 
was dehydrated with 75% ice-cold ethanol then 96% of 
ethanol before staining with Giemsa. 

 
Image acquisition 

Tube formation was examined by phase-contrast microscopy. 
For quantitative analysis, five fields (four quadrants and the 
center) of the Matrigel well were digitised by using a microscope 
(x 40 objective) equipped with a CCD camera connected to a 
computer equipped with the VEVA software. Each experiment 
was performed in duplicate. 

 

OVERVIEW TO THE APPROACH 

To automatically quantify the morphology of an 
endothelial cell network we have developed an 
approach of two main steps. The image analysis is 
based on firstly processing the original image to 
obtain intermediate images, which are used as the 
input to the second phase, which correspond to the 
quantification of the morphological parameters. 

The image analysis starts with the extraction of 
the cellular structures by means of a top-hat 
transformation, following by the separation of the 
tubular structures and the cell aggregates. An 
interpolation algorithm yields a reconstituted closed 
network and the skeleton of the tubes is also 
calculated by a thinning transformation. Then from 
these transformed images, different kinds of 
quantitative parameters are calculated. While the 
isolated cells and the cell aggregates are described 
both by a series of scalar size/shape parameters and 
by two curves of multi-scale aggregation. The 
quantification of the tubular-like structures implies 
the determination of the following geometric and 
morphologic parameters: (i) series of scalar 
size/shape parameters, (ii) morphological distribution 
of length, (iii) geodesic parameters such as branch 
points and extremities and (iv) spatial organisation of 
the reconstituted closed network. 

Mathematical morphology is a nonlinear image 
processing theory based on the application of lattice 
theory to spatial structures. A tutorial can be found in 
(Serra, 1982, 1988, 29). Additional references to 
particular operators are also given in the text. 

Further details of the different algorithmic steps 
are given below in Sections 4 and 5. The summary of 
the experimental results achieved and the associated 
discussion are presented in Section 6. Finally, the 
conclusions and perspectives of the present work are 
reported in Section 7. 

 
AUTOMATED IMAGE ANALYSIS 

The goal of this section is to introduce the 
full automated image processing steps of the 
approach. In order to easily follow the 
algorithms some examples and intermediate 
images are included. 

We must point out that image analysis is only 
fully automated only if the image acquisition is 
performed under relatively similar conditions 
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(e.g., staining procedure, microscope 
magnification, CCD camera performance, etc.). 
For similar endothelial cell images from other 

laboratories, some parameters of the algorithms 
would probably need to be adjusted.

Notations and main operators 
In the framework of digital grids, a grey level 

image can be represented by a function I: D I →T, 
where DI is a subset of Z2 and T={tmin,…, tmax} is an 
ordered set of grey-levels. Let B be a subset of Z2 and 
s∈N a scaling factor. sB is called structuring element 
(shape probe) B of size s. The basic morphological 
operators are: 
• Dilation: δB(I(x))=supy∈B{ I(x-y)}

• Erosion: εB(I(x))=inf-y∈B{ I(x-y)}  

The two elementary operations of erosion and 
dilation can be composed together to yield a new set 
of operators having desirable feature extractor 
properties which are given by: 
• Opening: γB(I)=δB[εB(I)]  

• Closing: ϕB(I)=εB[δB(I)]  

The morphological openings (closings) filter out 
light (dark) structures from the images according to 
the predefined size and shape criterion of the 
structuring element. 

A morphological tool that complements the 
opening and closing operators for feature extraction 
(extract the marked particles) is the morphological 
reconstruction, implemented using the geodesic 
dilation operator based on restricting the iterative 
dilation of a function marker I by B to a function 
mask J, i.e., δn

J (I) = δ1
Jδn-1

J (I), where δ1
J (I) = 

δB(I)∧J. The reconstruction by dilation is defined by 
γrec (J,I) = δi

J (I), such that δi
J (I) = δi+1

J (I) 
(idempotence). 

A granulometry is the study of the size 
distribution of the objects of an image. Formally, a 
granulometry can be defined as a family of openings 
Γ=(γn)n≥0 such that ∀n≥0, ∀m≥0, γnγm = γmγn = 
γmax(m,n). Moreover, a granulometry by closings (or 
anti-granulometry) can also be defined as a family of 
increasing closings Φ=(ϕn)n≥0. Performing the 
granulometric analysis of an image I where Γ is 
equivalent to mapping each opening of size n with a 
measure M(γn(I)) of the opened image. M(I) is the 
area of I in the binary case (number of pixels) and the 
volume in the grey scale case (sum of pixel values). 
The size distribution or pattern spectrum of I with 
respect to Γ, denoted PSΓ(Ι ) is defined as the 
following (normalised) mapping: 

PSΓ (Ι, n) = [ M(γn(I)) - M(γn+1(I))] /  M (γ0(I)), n≥0 
The pattern spectrum PSΓ(Ι , n) maps each size n 

to some measure of the bright image structures with 
this size (loss of bright image structures between two 

successive openings). The pattern spectrum 
PSΓ(Ι , n)  is a probability density function (a 
histogram): a large impulse in the pattern spectrum at 
a given scale indicates the presence of many image 
structures at that scale. It is also possible to use 
standard probabilistic definitions to compute the 
moments of PS. The first moment µ is given by 
µ=µ1=Σn nPS(I,n), the k-th pattern spectrum moment, 
k≥2, is computed as µk=Σn (n-µ) k PS(I,n). 

The distance function of a binary set X is a 
mapping distX(x) that associates to each point x∈X 
its distance to the background Xc, i.e., 
distX(x)=infx∈Xc d(x,y). The distance d(x,y) between 
two points x and y is usually defined by the length of 
the shortest path joining x to y (a path (x0, x1,…, xN) 
being a sequence of points of the grid such that, for 
each i, xi+1 is a neighbour of xi). Many algorithms 
have been proposed to compute the distance 
function (Borgefors, 1986, 5). The distance function 
is used as the transition between the binary images 
and the grey level images. 

The watershed line is one of the most powerful 
tools for segmenting images (Beucher and Meyer, 
1992, 3). The watershed line of the function I 
associates a catchment basin to each minimum of 
this function. Using the watershed on a grey tone 
image without any preparation leads to a strong 
over-segmentation. The best solution to this 
problem consists in initially determining markers 
for each region of interest (the image 
corresponding to the markers is denoted M). The 
other possibility is to filter the image I  for 
removing the parasitic minima (the new minima 
can be considered as the markers M). It is then 
possible to construct a watershed line associated 
with these markers Wshed(I,M ). 

 
Endothelial network extraction 

Let I culture be the original grey level image of 
a culture of endothelial cells. In this image, the 
cytological structures appear as dark upon a 
bright background relatively variable (shading 
effect). In order to filter out the noise and the 
small mistakes of digitalization, the first step is 
a Gaussian filter of size n×n, Gn×n (typically 
n=3), followed by an opening of size s1 which 
removes the small bright particles in the tubes 
(they could “disconnect” the structures which 
belongs to the same tube), i.e., I’ culture = γs1(Gn×n 
(I culture)), such that the value of s1 must be 
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smaller than the typical diameter for a tube; 
experimentally we have fix s1 = 4. 

The top-hat transformation is a powerful operator 
which permits the detection of contrasted objects on 

non-uniform backgrounds (Meyer, 1977, 26). The 
black (or dual) top-hat transform is the residue of a 
closing ϕ(I) and the initial image I and it is used for 

extracting dark structures. Therefore, from the image 
I’ culture, a black top-hat, ρ-

s2, enhances the endothelial 
network structures, I’’ culture = ρ-

s2 (I’ culture) = ϕs2 
(I’ culture) - I’ culture, where s2 corresponds to the size of 
the biggest cellular structure which can be found. 
After different tests, the value has been 
experimentally fixed to s2 = 20. The structuring 
element B for the above presented transformations is 
a circle. 

On the image I’’ culture a thresholding operation T[u, 

tmax] is performed to provide the binary mask of the 
endothelial network (the interval [u, tmax] determines 
the set of grey levels associated to the object of 
interest): Inet = T[u, tmax] (I’’ culture); here the choice of the 
threshold value is not critical (the top-hat facilitates 
just the thresholding), e.g. u = 40. In fig. 2 an 
example for extracting the endothelial network by 
means of the present algorithm is depicted. 
Systematic tests on a selection of images have shown 
that the approach is quite robust. 

 

 
Figure 2. Extraction of the image structures 
corresponding to the endothelial network: (a) original 
image Iculture, (b) opening of size 4, I’ culture = γ4(Gn×n 
(Iculture)), (c) dual top-hat of size 20, I’’ culture = ρ-

20 

(I’ culture), (d) binary image after thresholding, Inet = T[40, 

255] (I’’ culture) (here is shown the negative). 
 

Separation of tubular structures / cell aggregates 

In this second stage of the segmentation, the aim 
is the separation of the tubular-like structures (which 
constitute the actual endothelial network) from the 
isolated cells and the cellular clusters or aggregates 
(which have no elongated shape) on the other hand. 
That is, to classify the structures of Inet according to 
two criteria,  

• Size: The size of the connected component X (a 
binary set) is calculated by its surface area (i.e., the 
number of pixels), A(X).  

• Shape: Based on the form factor or circularity 
index of a set X, i.e., FF(X)=P(X)2 / 4πA(X), which is 
equal to 1 for a circle-shaped object. The FF 
increases when the shape becomes elongated or 
irregular, or if its boundary becomes wiggly.  

The isolated cells and the cellular clusters are 
structures with a surface area smaller than a given 
threshold, usize; or structures with a larger surface area 
but with an index of circularity smaller than a fixed 
threshold, ucircular. The endothelial tubes (and the 
lengthened clusters or quasi-tubes) are the structures 
with a surface larger than usize and with an index of 
circularity larger than ucircular. Connected cell 
aggregates with large surfaces are also considered as 
a part of the network (by their irregularity, their FFs 
are large); and in fact, this is profitable to use these 
aggregates as anchorage points of the tubes in the 
network.  

See in fig. 3 (a) an example of the classification of 
the connected components in a binary image with the 
tubular structures, I tubes, and another image with the 
isolated cells and the cell aggregates, Icells. After an 
exhaustive analysis on a representative selection of 
images, we found that for our images the application 
of the values usize = 200 and ucircular = 1.5 provides 
good results for classifying the structures. 

 

 
Figure 3.  Binary processing of the endothelial network (negative 
images are shown). Separation of the tubular structures and the cell 
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aggregates using the criteria of size and shape (usize=200 and 
ucircular=1.5): (a1) Inet, (a2) Icells, (a3) Itubes. Morphological skeleton by 
homotopic thinning of the tubes: (b) Isk-tubes = Thinnτ (Itubes). 

 
Skeleton of tubes by thinning 

The concept of skeleton of a binary set X is very 
intuitive however, its mathematical definition is not 
simple. Here, we propose to build the morphological 
skeleton using the thinning transformation. The 
thinning τB(X) is a morphological operator which is 
the subtraction between the input image and the hit-
or-miss transformation:  

ηB = (B', B'') = ε B'' (X) ∩ ε B' (X
c)  

with the structuring elements B' and B'' (B'∩B''=∅), 
i.e., τB(X) = X \ ηB(X). The result is an image 
preserving the pixels which center contains the 
pattern specified by B' and B'' marked as zero and 
removing the pixels which satisfies the pattern given 
by the structuring elements B' and B''. The skeleton by 
thinning, Thinnτ, is the application until stability (or nτ 
times) of the thinning operator using a sequence of 
structuring elements B' and B'', generated by 
successive rotations of a pattern. See in (Serra, 
1982,29) details on the suitable series of patterns to 
be used to obtain homotopic skeletons. 

Note that the skeleton is calculated only for the 
endothelial tubes: Isk-tubes = Thinnτ (I tubes). In practice, 
the iteration nτ = 20 is sufficient for the structures 
which one can find on these networks. In the fig. 3 
(b) an example of the application of the algorithm is 
given, after separation of the tubular structures. The 
skeleton Isk-tubes later allows the calculation of several 
parameters for the tubes. 
 
Interpolation of partial tubular network 

On the images of endothelial cell networks (see the 
original ones in fig. 1 and 5), we can observe that tubular-
like structures have the tendency to be organised into 
polygonal structures which lead to a network. This 
geometrical organisation in a network, which divides the 
space (partition of the space), is very interesting to know the 
biological/physical phenomena involved in the process of 
cellular differentiation. For instance, one could be interested 
by the state of formation of the network or by the number 
and the average surface of the polygons, etc. Consequently, 
it seems important to be able to evaluate which would have 
been the natural differentiation of the cellular structures if the 
network would have continued to be formed and also which 
is the current state (after fixing the cellular culture) 
compared to the supposed final one. From the mathematical 
morphology viewpoint, we can regard that as the 
interpolation of the network structures. We discuss here an 
algorithm for this binary interpolation. 

We propose the application of the watershed 
transformation on the distance function for the 

interpolation of the tubular structures (this is the dual 
algorithm of the classic approach for the separation of 
overlapping particles). 

 
Figure 4. Interpolation of the tubular-like image structures: 
(a) initial image Itubes (negative), (b) filtered distance 
function, I’ dist-tubes , (c) watershed lines superposed on the 
original structures, I interpol-tubes , (d) result of the interpolation 
of the tubular network on the culture image. 
 
This approach was satisfactory used for extracting 

the 3D structures in polyurethane foam (7). The 
common methodology is quite simple and is achieved in 
three steps (see fig. 5 for an example of interpolation): 

 
 

Figure 5. Three examples of morphological inter-polation of the 
partial   tubular network. 
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1. Computation of the distance function of the negative of 
the binary image, i.e., Idist-tubes = dist(Ictubes). The maxima (positive 
peaks) of the function distance are the centers of the quasi-
polygons (the zones between the tubes) and the minima 
(valleys) are associated to the tubular structures.  

2. Simplification of the distance function by means of an 
opening by reconstruction using as marker the function 
obtained by subtracting a constant value h from the distance 
function: I’dist-tubes = γrec(Idist-tubes , Idist-tubes - h). The maxima of the 
distance function after filtering will depend on the value of h 
and these maxima are important as markers for the watershed 
line which interpolates the structures (ideally, we need a 
maximum for each center of polygon). We found that using 
h=5 the results are satisfactory.  

3. Determination of the watershed for the negative of the 
simplified distance function: 

Iinterpol-tubes = Wshed((I’dist-tubes)
c, Min ((I’dist-tubes)

c)).  
This transformation provides a means of deciding if the 
beginning of a structure must be prolonged, to be linked with 
another neighbouring structure (that is, if this edge creates a 
minimum of the distance).  
In fig. 5 the result of the application of the algorithm on three 
networks of tubes is shown. It is possible to find a good trade-
off between false positives and false negatives, due to the result 
of the initial detection of tubes as well as the size of filtering. 

 
MEASURED PARAMETERS AND 

MORPHOLOGICAL QUANTIFICATION 

Once these images have been obtained, the binary 
connected components corresponding to the elements of the 

endothelial network can be analysed. The different steps of 
quantification are considered in this section. 
Quantification of cell aggregates 

In order to quantify the cell size/shape, classical global 
parameters can be calculated from the binary connected 
components of image Icells: (1) Normalised Number of Cells 
(relative to the studied surface) Nnorm

cells = Ncells / Npixels, (2) 
Relative Area of Cells (in comparison with the area of tubes) 
Acells = A (Icells)/ A (Inet), (3) Cell Mean Area Amean

cells = A (Icells)/ 
Ncells. It is more interesting to calculate the distribution and the 
spatial organisation (dispersion) of the isolated cells/clusters 
compared to the tubular-like structures. To do that, we 
propose a study of cell aggregation based on computing a 
granulometry, combined with the skeleton of influence zones, 
SKIZ. The influence zone of a connected component Xi of X is 
the set of points of the plane that are closer to Xi than to any 
other component of X. The SKIZ(X) is then defined as the 
boundary of all zones of influence (29).  

In fig. 6 (a) an example of aggregation analysis is given. 
Starting from this morphological muti-scale decomposition it 
is possible to define two curves. The Anti-Granulometry 
Curve of Cells, PS(Icells , -n), which corresponds directly to the 
pattern spectrum by closings, associating to each size n the 
increasing surface taken up by the cell aggregates (40 ≤ n 
≤ 160). 
n → PS(Icells , -n) = [ M(ϕn(Icells)) - M(ϕn-1(Icells))] /  M (ϕ0(Icells)) 

 

A second curve is derived from the n images SKIZ(ϕn(Icells)). 
The Aggregation Curve of Cell Regions, AGCR(Icells , n) is 
obtained by computing for each n the standard deviation of area 
of influence regions, i.e., AGCR(Icells , n) = σAskiz (n). 
 
 
 

 
Figure 6. Aggregation analysis of cells by means of anti-granulometry from Icells. (a1)-(a4) isotropic closings ϕn(Icells) of size 
n=0, n=40, n=60 and n=80 respectively; where the corresponding SKIZ is superposed. (b1) Anti-granulometry Curve of Cells 
associated and (b2) the corresponding Aggregation Curve of Cell Regions. 
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This curve yields a compact description of 
dispersion in the aggregation (peaks correspond to 
maximal disorder). As we will shown below the 
aggregation curves are very useful to compare 
different cell populations obtained according to the 
concentration of the molecule to be tested. 
 
Quantification of tubular structures 

Again, starting from I tubes and Isk-tubes, several 
global parameters can be defined in order to quantify 
the tubular structures: (1) Normalised Number of 
Tubules, Nnorm

tubes = Ntubes / Npixels, (2) Relative Area 
of Tubules, Atubes = 1-Acells , (3) Tubule Mean Area, 
Amean

tubes= A (I tubes) / Ntubes, (4) Normalised Length of 
Tubules, Lnorm

tubes = A(Isk-tubes) / Npixels,, (5) Tubule 
Mean Length, Lmean

tubes= A(Isk-tubes) / Ntubes, (6) 
Thickness Factor of Tubules, TFmean

tubes = Σi TFi
 / 

Ntubes, where the thickness factor of tubule i is defined 
as the ratio of areas, i.e., TFi = Ai

 sk-tube/ A
i
 tube. 

However, in order to quantify adequately the 
tubes, a granulometry analysis can again be applied. 
In fact, the most indicated transformation to be used 
is a linear opening of size n which is obtained by the 
supremum of openings according to several 
directions, i.e., γL

n = γ0°
n ∨ γ45°

n ∨ γ90°
n ∨ γ315°

n . Then, 
the associated granulometry or Linear Pattern 
Spectrum of Tubes, LPS(I tubes,n), allows us to describe 
length distribution of tubular structures: 

 

n → LPS(Itubes,n) = [ M(γL
n(Itubes)) - M(γL

n+1(Itubes))] / M (γL
0 (Icells)), 

 with 10≤n≤150. 
Fig. 7 shows an example of LPS(I tubes,n). Its 

derived moments (mean and variance) are very 
useful to estimate compactly the length distribution 
of tubes. Besides the previous length parameters, 
for this type of tubular network, it is interesting to 
quantify other intrinsic features to evaluate the 
complexity of their ramified structure. These 
characteristics are mainly the extremity points and 
the branch points of the particles. 
 

 
Figure 8. Geodesic description of tubular structure: (a) 
end-points and triple-points from skeleton by thinning, 
(b) two examples of extremities and branch points from 
geodesic distance function. 

 
A classical way to obtain these two features 

consists of, starting from the skeleton of the tubes, 
obtaining the end-points and the triple-points by 
means of the hit-or-miss transformation, see example 
in fig. 8 (a). However, we prefer to use the technique 
of morphological wavefronts (30), which consists in 
considering the geodesic distance as an isotropic 
wave, with a origin at the most distant extremity, and 
to study the evolution of the connected components 
(branching points) as well as the maxima of the 
geodesic distance function (extremity points). The 
most important advantage of this method with respect 
to the skeleton is that the passage that we can make 
from a binary object to a weighted graph which 
describes its characteristics (with this second more 
compact representation), the analysis of the object 
can be done more effectively. All details concerning 
the implementation can be found in (1) and the 
theoretical background in (30). Fig. 8 (b) shows two 
examples of extremities/branches obtained by this 
technique. So, from a quantitative viewpoint, we 
propose three parameters for the endothelial cell 
networks: (1) Normalised Number of Ends, Nnorm

ends 
(for all tubes of the network with respect to the 
surface), (2) Normalised Number of Branch Points, 
Nnorm

branches, (3) Tubule Mean Geodesic Length Factor, 
ρmean

tubes = Σi ρi
 / Ntubes, where ρ = πL2/4S, such that L 

is the geodesic length of the tube (obtained from the 
morphological wavefront) and S its surface. 

 

 
Figure 7. Granulometric analysis of Itubes using a linear pattern spectrum: (a1)-(a3) linear openings γLn(Itubes) of size n=0, 
n=5 and n=10 respectively (negative images). (b) Associated granulometric curve (linear pattern spectrum).  
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Finally, starting from the result of the morphological 
interpolation Iinterpol-tubes, we propose a last set of parameters to 
characterise the progression of differentiation cellular 
process consider as associated to the spatial network 
organisation. The result of this polygonal partition of space 
Iinterpol-tubes is very similar to the result of a SKIZ; and 
mathematically, it is rather close to a known probabilistic 
model of space partition (the partition of Voronoï). 
However, to quantify the spatial partitions obtained by 
interpolation we propose to use simple scalar parameters: (1) 
Normalised Number of Polygons, Nnorm

polygons, (2) 
Normalised Length of Polygons, Lnorm

polygons, (3) Network 
Progression Factor, NPF = A(Inet ∧ Iinterpol-tubes) / A(Iinterpol-tubes), 
(4) Polygon Mean Area, Amean

polygons, (5) Polygon Standard 
Deviation Area, σApolygons . 

 

RESULTS AND DISCUSSION 

After a pretreatment for 72hrs incubation of 
HUVEC with or without FGF-2 (angiogenic 
growth factor) in the presence of different 
concentrations (from 0.1 to 100µg/ml) of sulfated 
exopolysaccharide, EPS, alone untreated or 
treated endothelial cells were seeded on Matrigel. 
After a FGF-2 pretreatment and during 18hrs of 
culture on Matrigel, activated endothelial cells 
adhered, aligned, migrated and formed tubular-
like structures into a partially organized capillary-
like network. When HUVEC were previously 
treated with FGF-2 and EPS, this sulfated 
polysaccharide modulated the density of the 
capillary-like network induced by FGF-2 in a 
concentration-dependent manner. For the different 
concentrations of FGF-2 + EPS (and for a 

negative control), five image fields were acquired 
and each experiment was performed in duplicate. 

 
Figure 9. Example of an image field for each endothelial cell 
culture used in the study of the effect of sulphated 
exopolysaccharide (EPS) on FGF-2-induced network structures: 
(a) negative control, NC (untreated), (b) FGF-2 alone, (c) FGF-2 
+ EPS tested at 0.1µg/ml, (d) FGF-2 + EPS at 1 µg/ml, (e) FGF-2 
+ EPS at 10µg/ml, (d) FGF-2 + EPS at 100µg/ml. 
 

Therefore ten images are available for each 
cellular culture. In Fig. 9 the example of an image 
field for each endothelial cell culture used in the 
study is given. 

The automated morphological analysis was 
performed on four image fields (selected 
randomly from the ten). All of the above 
presented morphological parameters were 
computed and the mean of the four processed 
images is considered as summary of these 
morphological parameters are depicted in Fig. 10 
to 15. As it is showed in Fig. 9, endothelial cell 
differentiation into tube-like structures was only 
observed by the presence of FGF-2 with or 
without EPS (between 0.1 and 10µg/ml) whereas 
no or a few tubule-like structures were observed 
without FGF-2 (negative control) or with FGF-2 + 
EPS tested at 100 µg/ml, respectively. 

 
 
 
 

 
Figure 10. Summary of the values of size and number parameters for the isolated cells and aggregates: (a) normalised number of 
cells, (b) relative area of cells, (c) cell mean area. The first bar is the negative control, the second one is FGF-2 alone and the 
other bars correspond to the EPS concentration according to values of fig. 9. 
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To optimize the quantification of tubes, some 
morphological parameters such as isolated vs. 
aggregated cells were analysed. From these 
parameters two main cell populations were 
characterized, non- or less-differentiated and 
differentiated cells. From the non- or less-
differentiated cells, many isolated cells (especially 
from negative control) were quantified with maxima 
values obtained for the relative area of cells and cell 
mean area (especially for FGF-2 + EPS at 100µg/ml). 
With their curves describing the pattern spectrum of 
cell aggregation or aggregation of cell regions which  

showed similar profiles reaching the same peak of 
PSAG (Fig. 11 (a)) or the same start point in 
AGCR and final point in size of closing (Fig. 11 
(b)). These morphological parameters indicate that 
isolated cells with mainly round shapes were 
homogenously distributed on Matrigel. 
Concerning differentiated cells, low number of 
normalised isolated cells were quantified, 
especially from experimental conditions FGF-2 + 
EPS tested at 1 and 10µg/ml with the lowest 
values of cell relative area and of cell mean area 
from FGF-2 + EPS at 10µg/ml only. 

 

 
Figure 11. Comparison of the aggregation curves for the cells according to the presence of FGF-2 and concentration of EPS 
(cultures of fig. 9): (a) pattern spectrum of cell aggregation, (b) aggregation of cell regions. 
 
Aggregation curves (pattern spectrum of cell aggregation 

and aggregation of cell regions) obtained from cells with 
FGF-2 alone, reached peaks close to those obtained from 
non- or less-differentiated cells with a more important width. 
From cells treated with FGF-2 + EPS tested between 0.1 
and 10µg/ml, their curves reached peaks at higher values of 
size of closing also with a width more important than cells 
treated with FGF-2 alone. Maxima values of aggregation 
curves were obtained from cells treated with FGF-2 + EPS 
tested at 10µg/ml. Among these parameters, only the 
relative area of cells allowed to distinguish the different cell 
populations with round shape for non- or less-differentiated 
cells and elongated shape for differentiated cells. 

After automated morphological analysis for the  

quantification of tubular structures was performed to give 
size, number and shape of tubular structures (Fig. 12); linear 
granulometric pattern spectra (Fig. 13) and values of 
geodesic parameters (Fig. 14) were performed. Among all 
these morphological parameters, non- or less-differentiated 
cells showed the smallest values of tubule mean area, tubule 
normalised length, tubule mean length; and linear 
granulometric first and second moments (mean length and 
std. dev. respectively) and the smallest tubule mean geodesic 
length factor. Only their thickness factors were the largest 
(especially for cells from negative control) and that could be 
explained by the analysis of very short tubules (in the case of 
FGF-2 + EPS 100µg/ml) or aggregates considered as short 
tubules (in the case of negative control). 

 

 
Figure 12. Summary of the values of size, number and shape parameters for the tubular structures: (a) normalised number of 
tubules , (b) tubule mean area , (c) normalised length of tubules , (d) tubule mean length , (e) thickness factor of tubules . Bars 
idem fig. 10. 
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Figure 13. Comparison of the linear granulometric pattern spectra for the tubular structures (cultures of fig. 9): (a) curves, (b) 
first and second moments of the granulometries. 
 

 
Figure 14. Summary of the values of geodesic parameters for the tubular networks: (a) normalised number of ends , (b) 
normalised number of branch points , (c) tubule mean geodesic length factor . Bars idem fig. 10. 
 
 
Concerning differentiated cells, their 

values for tubule mean area, normalised 
length of tubules and tubule mean length were 
higher than those described from non- or less-
differentiated cells with maxima values 
obtained from FGF-2 + EPS at 10µ g/ml. Their 
curves describing the linear pattern spectrum 
of tubules were more spread with peaks more 
displaced to the right than those of non- or 
less-differentiated cells. The values 
corresponding to first and second moments of 
the granulometries (Fig. 13(b)) and also to 
tubule mean geodesic length factor (Fig. 
14(c)) showed then the highest values 
obtained from cells treated with FGF-2 + EPS 
with a maximum in the presence of EPS added 
at 10µ g/ml. Like for normalised number of 
cells, these two cell populations were not 
distinguishable by the normalised number of 
tubules (Fig. 12(a)), normalised number of 
ends (Fig. 14(a)) nor normalised number of 
branch points (Fig. 14(b)). 

By the study of the spatial progression for 
the interpolated networks, the non- or less-
differentiated cells and differentiated cells 
were more distinguishable (Fig. 15). Indeed, 
cells from the negative control (without FGF-
2) or FGF-2 + EPS at 100µg/ml had the lowest 
normalised number of polygons, normalised 
length of network and the lowest network 
progression factor (especially for negative 
control) whereas they had the highest polygon 
mean area and polygon standard deviation area. 
Concerning differentiated cells, they almost all 
had the same highest normalised number of 
polygons, normalised length of network and an 
important network progression factor which 
increased with the EPS concentration until 
10µg/ml added to FGF-2. Their polygon mean 
area with polygon standard deviation area 
obtained were the lowest with non-significant 
differences between the different conditions 
(FGF-2 alone and FGF-2 + EPS tested between 
0.1 and 10µg/ml). 
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Figure 15. Summary of the values of spatial progression for the interpolated networks: (a) normalised number of polygons , (b) 
normalised length of network , (c) network progression factor , (d) polygon mean area , (e) polygon standard deviation area . 
Bars idem fig. 10. 
 
Among these morphological parameters automatically 

determined, some relationships could be established such as: 
less isolated cell number was accompanied with more 
aggregation of cell regions. And an important tubule mean 
length with important first/second moments of linear 
granulometries corresponded to an important normalised 
number of extremities (in some cases), with important branch 
points and tubule mean geodesic length factor. Concerning 
the spatial progression for the interpolated network, an 
important normalised number of polygons, of length of 
network, of network progression factor indicated a dense 
network composed of polygons with small size. Other similar 
correlation between the parameters could be determined. 

Comparison automatic versus manual analysis 
By using software for manual image processing the ubule 
length was assessed by drawing a line along each tubular-
like structures and measuring the length of the line in pixels.  

Contrary to the automatic analysis which was applied to 
all experimental conditions (even for non-differentiated 
cells), only differentiated cells could be quantified for 
manual analysis. By this manual analysis, only the total 
length of tubular structures with the distribution of tubular 
structures according to the structure length was measured; 
and branch points were also counted (by marking the 
interconnecting segments). Fig. 16 shows the results of the 
manual quantification parameters. 

 

 
Figure 16. Summary of the values for the quantitative parameters obtained manually from the initial grey level images (cultures 
(b) to (f) of fig. 9, the negative control has not been manually processed): (a) total number of tubular structures per field image, 
(b) total branch points per field image, (c) distribution of tubular structures according to the length of the structure. 
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We can therefore observe the coherence of both 
methods of quantification: the tubule mean geodesic 
length factor and first/second moments of 
granulometries obtained for each experimental 
condition showed the same profile obtained after 
manual measurement of total tubular length per field. 
This can be considered as a validation of the 
automatic approach. 

 
Statistics of parameters 

Fig. 10 to 15 present the mean values of the 
morphological parameters measured on images under 
different concentrations of FGF-2+EPS and for the 
negative control. In fact, each concentration is 
represented by ten images: four by well, with duplicated 
wells. Remember that all the parameters were computed 
from four images, selected randomly between the ten. 
Most of parameters, especially for the tubular structures, 
have small dispersion (CV lower than 10%). 
 

CONCLUSIONS AND PERSPECTIVES 

In this paper we have presented a set of algorithms 
developed for quantitatively analysing the differentiation in 
tubular-like networks of in vitro endothelial cells cultured 
on a Matrigel support. The method deals with a completely 
automatic approach which provides a complex and 
powerful descriptor, by taking into account all the 
morphological features which describe the structure. 

We have proved the interest of the approach for an 
improved automated quantifying (compared with manual 
techniques) to evaluate the angiogenic modulator effect of 
a molecule, and in order to determine their optimal 
concentration. In addition, the usefulness of this descriptor 
or a part of the present algorithms is not limited to study 
the assays of endothelial cells on Matrigel. Other 
angiogenesis assays such as the rat aortic ring or in general, 
other experimental models of the proliferation of biological 
structures in tubular-like networks,branching phenomena, 
etc. could be objectively quantified by means of the 
suggested techniques. 

We have shown that the most interesting parameters to 
quantify this kind of structures are the morphological 
distributions of lengths, the geodesic parameters (branch 
points and extremity points), the spatial distribution of the 
isolated cells and the spatial organisation of the tubes into 
polygonal networks. 

Obviously, the present approach can be used to study 
the kinetics of the dynamic process of migration of the 
endothelial cells. To do that, the main difficulty is to obtain 
the sequence of images, using for instance a time lapse 
phase contrast video microscopy (Meade-Tollin and Van 
Noorden, 2000, 25). In view of the fact that the cells can 
not be fixed or stained, see Fig. 1 (a), the segmentation task 
becomes more difficult. 

Concerning the perspectives of this study, we believe 
that the next stage to be considered is the development a 
morphological-based mathematical model for the 
simulation of the cellular organisation into tubular-like 
networks. Mathematical models using the Burgers 
dynamics equation have been developed to simulate 
endothelial cell networks by (Gamba et al., 2003, 11). 
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