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Abstract – Our goal is to organize the ElectroEncephaloGram (EEG) signal so as to describe and image various brain activities. Our work is based on a 
data structure, a graph, which sums up the brain activity in the spatial, temporal and frequency domains. From the information contained in the time-
frequency map of EEG signals, a graph is constructed. In order to analyze the complexity of the signal, our method is based on a multi-scale approach with 
several levels of information extraction. To compare different EEG signals, we use techniques of graph-matching with our data structure. The developed 
algorithm is based on the A* algorithm that allows us to compare variations of the recorded EEG in term o f latency, frequency, energy and activated areas. 
The results of this project show first, that the graph is an appropriate tool to reduce the cortical activity complexity, and second, that graph-matching offers 
some interesting perspectives in order to describe functional brain activity. 
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INTRODUCTION 

Our goal is to describe brain functioning from 
cognitive tasks to low-level cerebral activations. For that 
purpose, we develop a generic analysis methodology 
based on a data structure holding all information 
arranged in a hierarchical way. By this structure, we 
consider the brain dimensions in terms of time, 
frequency or space. One of our preoccupations is to 
validate this methodology with classical approaches. 

Electromagnetic activations are essential to brain 
functioning comprehension as they directly reflect 
information transmission between neurons. Thus it is 
possible to observe very short activations with duration 
of only a few milliseconds by means of 
ElectroEncephaloGram (EEG) or 
MagnetoEncephaloGram (MEG), whereas duration of 
the hemodynamic activation of several seconds is 
required in Positron Emission Tomography (PET) and 
Functional Magnetic resonance Imaging (fMRI) [3]. 

In addition to good time resolution, the EEG presents 
a good spatial distribution (with up to 256 electrodes on 
the scalp). It allows us to record cortical activity in a 
powerful way. The EEG principle is based on the fact 
that populations of neurons form complex neuronal 
networks whereby feedback loops are responsible for the 
generation of oscillatory activity and determine its 
resonance frequency. [2].  

Even if only a small fraction of the total population of 
neurons is synchronized, the resulting oscillations may 
well outweigh the rest of non-synchronized neurons 

[4,6]. This small fraction of synchronized neurons 
generates a specific signal at high frequency (>100Hz) 
with a low energy. Upon the task, a large neuron 
assembly could be necessary and synchronizes itself 
inducing an increase of energy [22]. As a reaction to an 
external event, the brain generates evoked responses in 
specific frequency bands and related brain areas. Thus, 
the information contained in EEG signals is coded in 
amplitude, frequency and spatial position. Therefore, the 
EEG presents a high level of complexity. Different 
methods, from parametric ([11,21]) to nonparametric 
methods (spectral analysis [9], coherence [8]) via time-
frequency analysis [3,12,13,19], are investigating brain 
electrical signals.  

The main idea of our approach is that the brain 
response to excitation is not linear but is a sum of linear 
responses in a non linear structure. The hypothesis is that 
the low level activity producing synchronization could 
be modeled by a linear response. These synchronizations 
are linked in a non linear structure. This non linear aspect 
is embedded in a graph and the continuous aspect in a 
time-frequency analysis. In practice, we construct a 
graph simplifying the data by keeping only the pertinent 
information and the link between the various 
components thereof. The information is extracted via 
time-frequency analysis (using the complex Morlet 
wavelet transform). Finally, the matching is the 
instrument to measure similarities between graphs. The 
matching step, performed by algorithms such as A* [15] 
is used to compare, to classify signals, to follow the 
cortical activity evoked by the stimulation, or to better 
understand the information contained in the signals. 
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The strategy followed is, first, to perform EEG signal 
modeling by a time-frequency representation. In the 
second step, we present the graph built in order to obtain 
a data structure including the spatial contents. To validate 
this process, we establish comparisons between our 
structure and a classical approach based on statistical 
techniques (Event-Related Synchronization, ERD and 
Event-Related Synchronization, ERS). Before presenting 
the results, we develop the methodology used to 
compare two graphs. The interest comparison is 
demonstrated at the end of the discussion section. 
Finally, we conclude with our current developments and 
prospects in brain activity analysis. 
 

MATERIAL AND METHODS 

Data Set and Acquisition 

Subjects and stimulus material 

Ten subjects, between 30 and 50 years of age, 
participated in this study. All subjects were right handed 
as confirmed by a standard test for handedness, had no 
hearing impairment, had normal vision or were corrected 
to normal vision, and were without past history of 
abnormalities of the central nervous system.  

The participants had to apply a certain cognitive 
strategy, known to involve the frontal lobes in particular. 
They answered questions of approximation asked in the 
course of the paradigm (for instance “How may oranges 
in a kilogram?”).  

Experimental Procedure 

Subjects sat in front of a computer screen and were 
confronted sequentially with the stimulus material, 
presented via loudspeakers positioned on both sides of 
the screen. In detail, the temporal sequence of  the trials is 
(see Fig.1): 

1. a question known to involve the frontal lobe, 
2. the thinking useful to elaborate a solution to the 

question raised, 
3. the answer to the question , 
4. a pause of 5 seconds at the minimum.  

 
Figure 1. The temporal sequence of the experimental 
procedure. 
 

The EEG was recorded from 25 Ag-AgCl electrodes 
positioned on the scalp in proportion to a 5x5 matrix (Fig 
2). Uniform spacing was allowed between the electrodes. 
The band pass filter of the amplifier was set between 
0.54 and 60Hz, with  a 50 Hz notch filter included.  

The EEG was recorded with a sampling rate of 250 
Hz during the presentation of stimulus blocks. Individual 

EEG recordings were scanned visually for artifacts. Only 
answered trials, free of artifacts were included in the 
subsequent analysis. Individual recordings were scanned 
visually for question and answer trigger marks. Then the 
recordings were trimmed to keep from 5 seconds before 
the beginning up to 5 seconds after the end of the answer. 

 

 
Figure  2. Positioning of the 25 EEG electrodes on the scalp. 
Only the E1-4 electrodes do not follow the conventional 
electrode placement. 

 

Signal Modeling 

For a good understanding of cortical functioning, it is 
important to simplify the complex EEG signal. The 
simplification process we use is based on neuronal 
information coding. The amplitude, the frequency and 
the spatial position had to be investigated. Therefore a 
time-frequency transform is applied to extract the 
frequency, latency and duration of oscillatory 
phenomena as accurately as possible. The choice of the 
time-frequency transform was concerned with wavelet 
decomposition. The wavelet interest is its dual 
temporal/frequency representation that can tell when is 
which frequency, i.e. a technique in which the frequency 
resolution changes with the temporal localization.  

Time-frequency representation 

Wavelets are mathematical functions that decompose 
data into different frequency components, and then study 
each component with a resolution which is adapted to its 
scale [5]. This approach is well suited to our problem to 
describe EEG synchronization as precisely as possible. 

A mother wavelet [14] is a function 21 LL ∩∈ϕ with 
n+ 1 null moment (L1

 is the space of integrable functions 
on ℜ  and L2

 is the space of square integrable functions 
on ℜ ). n acts on the shape of  φ curve representation 
(the larger the value of n, the more oscillations φ will 
have). 

Atoms of the wavelet transform are defined by the 
translation and the dilation of φ. For any scale factor 
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∗+ℜ∈a and any position factor ℜ∈b , an atom is 
defined by: 
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The chosen mother wavelet )(, tbaϕ  is the complex 

Morlet wavelet which has a simple analytic form and has 
a good time and frequency resolution [6]. The complex 
Morlet function is defined as the product of a complex 
exponential wave and a Gaussian envelope. 
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where constant k is the wavenumber defined in 
accordance with the signal length. 

The wavelet estimate of the energy density in time-
scale plane -scalogram- is given by: 
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By this translation, we can represent our EEG signal 
in a time-frequency map as shown on the figure 3 (b); 
the high energy level is represented by a red color and 
the low one by a blue color. Consequently, if a red burst 
appears on the map, it means that this frequency is 
strongly presents at this given time (for instance, lots of 
10 Hz at 0.2 sec).  

Conserved information 

With the use of the wavelet transform, the frequency, 
latency and duration of the oscillatory phenomena are 
identified on a map. This map is composed of pixels. 
Each pixel represents the energy of a defined frequency 
at a precise time (see fig3 (b)). The next step is to extract 
the interesting pixels to model the EEG signal only with 
its main characteristics. A threshold is applied on the 
time-frequency map to remove the noise and 
background activity. This threshold is defined for each 
map according to the pixel level. After a well study of the 

map composition, we observe that the map histogram is 
bimodal, one mode, in the low level, pixel represents the 
noise and the background activity and the other mode, in 
the high level pixel, represents the event-related activity. 
A bi-Gaussian modeling is used to define the threshold 
level. Consequently by removing low level pixels we 
only keep the interesting EEG features (Fig. 3 (c)).  

After all, a watershed algorithm [1, 18] is use to 
segment the thresholded map into bursts of interest. This 
algorithm performs segmentation by labeling connected 
areas within the gradient of the time-frequency image. 
Regarding the morphological gradient of the original 
image as a topographic surface, the rule of assigning 
labels can be derived from physics: a particle in free fall 
on a topological surface will move due to gravity 
downward to the deepest neighboring location. The task 
performed by the present algorithm is to trace a path for 
each non-minimum point on the surface (origin) to a 
minimum (destination), and to mark all pixels along the 
path with label of the minimum. This path is the final 
boundary of each burst of the time-frequency map (Fig. 
3 (d)). Each segmented burst i is individually 
characterized by four features:  

• ti: time position on the energy maximum of the 
burst, 

• fi: frequency position of  the energy maximum 
of the burst, 

• Êi: maximum energy of the burst, 
• Ēi: averaged energy of the burst. 
By this signal modeling, we have extracted and 

characterized each oscillation of interest represented by a 
burst in our time-frequency map. Consequently a signal 
S can be sum by a set of bursts features, with the burst set 
B and |B| its cardinal: 
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i
iiii EEftS

0
;ˆ,,

=
=  

Even if the amplitude and frequency information has 
been investigated, we have no information about the 
spatial position. The link between burst along time and 
frequency and its spatial position should be also 
modeled. In a first approximation, it would be possible to 
sum up the brain activity from an electrode by a set of 
energy bursts, but this approach could not easily describe 
the dependence relation between bursts. Consequently, 
we chose to use a graph structure able to describe on the 
one hand the energy burst localization in time, frequency 
and spatial space and, on the another hand the 
dependence relation. 

Graph structure and graph-matching 

Graph definition 

A graph is a pair ),( EVG = of sets 
satisfying 2VE ≤ , thus the elements of E are 2-
element subsets of V. The elements of V are the vertices 
of the graph G, the elements of E are its edges. In a 
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directed graph, E is a set of directed edges. A labeled 
graph is a quad ),,,( βαEVG , where α is the vertex 
labeling function and β the edge labeling function. 
Labels describe the vertices and edges properties. 

Naturally, the main approach is to combine bursts 
extracted from the time-frequency map with the graph 
vertices. We obtain a directed labeled graph 

),,,( βαEVG  defined as following: 
– V: non empty and finite set of vertices, each 

vertex represents an energy burst. 
– VVE ×⊂ : finite set of directed edges, each 

edge represents the link between two bursts. 
– LV: non empty and finite set of labels of one 

vertex defined by (Ê, Ē). 
– LE: non empty and finite set of labels of one 

edge defined by (∆t , ∆f ) with ∆t  the time 
variation and ∆f the frequency variation from the 
edge origin until the edge destination. 

– VLV →:α : vertex labeling function. 
– ELE →:β : edge labeling function. 
–  

Application to the EEG activity representation 

To reduce the signal complexity, we use an 
abstraction trough a simple model. For that, we 
conserved in the time-frequency representation the burst 
of significant energy level. To chain these bursts inside 
the graph representation is our main difficulty. As a 
connection between all bursts implies a huge complexity 
in the data structure and the graph manipulation, it is 
necessary to limit the edges number. 

To respect the brain activity and enhance the 
structure ability, we only consider edges in which the 
time distance between the two bursts is low in 
accordance to the detail level (frequency domain). 
Consequently the structure allows us to manipulate 2-
complex representation (fig 3(e)). 

 

Graphs comparison 

Comparing two cortical activities corresponds, in our 
case, to compare the variations of the recorded EEG 
answer in term of latency, frequency, energy and 
activated areas. Thus, estimate these variations, with our 
data structure, is equivalent to measure the graph 
similarity. For that two steps are necessary, the first one is 
to find the most common subgraph in the two graph 
candidates, it is the graph matching problem. The second 
is the measure computation between these two common 
subgraphs. Generally a unique optimization algorithm is 
used to combine these two steps, the graph matching 
problem using a similarity measure. 

 

 
Figure 3. EEG signal modeling. (a) the raw EEG signal, (b) 
the time-freqency map from a Morlet wavelet decomposition 
between 8-12Hz, (c) the adapted thresholded time-frequency 
map, (d) the bursts extracted from the  thresholded time-
frequency map by a watershed algorithm, (e) the graph built 
from the extracted bursts, each burst is linked with its two 
nearest  bursts in time and frequency. 

 

This matching is done by isomorphism, we are 
looking for the best association between the vertices and 
the edges of G1 (V1, E1, α, β) and the vertices and the 
edges of G2 (V2, E2, α, β). A graph isomorphism between 
G1 and G2 is a bijective mapping 21: VVf →  such that  

1. ( ))()(, 211 vfvVv αα =∈∀  

2.  
( ))(),(),(,),( 2111 efvfevVVev ββ =×∈∀ . 

For the same brain process, the neuronal oscillations 
and the number of oscillations are not totally identical. So 
the two brain processes that we want to compare have 
not necessarily the same length, it means trying to match 
a graph with a subgraph of a larger graph. To get this 
isomorphism, similarity distances have to be defined to 
know how similar two bursts or edges are.  For each 
label l, a similarity Sl is defined: [ ]1,0∈lS  

with { }EV LLl ,∈ .  

By the mean of these similarities, it is possible to 
estimate the similarity SG1-G2 between two graphs G1 and 
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G2. The goal is to maximize this similarity to find the 
most similar common subgraph.  
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M is the result matrix of the best matching between G1 and 
G2.  

The implemented matching algorithm is based on the 
A* algorithm which is a graph search algorithm that 
finds a path from a given initial vertex to a given goal 
vertex [15]. It employs a heuristic estimate that ranks 
each vertex by an estimate of the best route that goes 
through that vertex. It visits the vertices in order to this 
heuristic estimates. Consequently the A* algorithm 
permits to find the optimal solution, however it is not 
optimized in term of computation time (O(log(|V|)) 
complexity, with |V| the number of graph vertices). 
Some algorithms as those proposed by Gold or 
Ranganath [10,17] could be more optimized. 

Similarity formulation 

The similarity functions are defined for all labels 
{ }EV LLl ,∈ . These functions need normalized 

measures between two labels. In this case, the 
normalization is done by using the distance maximum 
between two labels in  destination 21 VV × or 21 EE × , 
for instance: 
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max
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The ∆t and ∆f functions used l1 expression in time and 
frequency domain. The purpose was to validate the 
structure and the approach, not the distance functions or 
similarity formulation. Moreover numerous existing 
formulations are possible from Minkowski Norm to 
fuzzy expressions [20]. A specific work on this question 
is in process. 

Event-related De/Synchronization 

To validate our approach, we need to compare our 
results with results from a well-known technique. The 
event-related phenomena represents frequency specific 
changes of the ongoing EEG activity and may consist in 
general terms, either of decrease or of increase of power 

in a given frequency bands. This may be considered to 
be due to a decrease or an increase in synchrony of the 
underlying neuronal populations, respectively. The 
former case is called event-related desynchronization 
(ERD) and the latter event-related synchronization 
(ERS). A method has been developed, mainly by 
Pfurtscheller et al. [16], to measure these phenomena. 
The classical method to compute the time course of ERD 
includes the following steps (Fig. 4):  

1. raw EEG epoch selection. 
2. bands pass filtering of all event-related trials. 
3. squaring of the amplitude samples to obtain 

power sample. 
4. averaging of power samples across all trials. 
5. averaging over time to smooth the data and 

reduce the variability. 
  This procedure results in a time course of band 

power values, including phase-locked power changes as 
well. To obtain percentage values for ERD/ERS, the 
power within the frequency band of interest in the period 
after the event is named A whereas that of the preceding 
baseline or reference period is named R. ERD or ERS is 
defined as the percentage of the power decrease or 
increase, respectively, according to the expression: 

100% ×−=
R

RA
ERD  

 

 
Figure  4.  Principle of ERD processing. (a) Raw EEG signals, 
(b) bandpass filtered signals (8-12Hz), (c) squared samples, (d) 
relative power of the averaged squard samples on a chosen 
trigger, in black the significant difference from the reference 
(dashed rectangular). 

 
The same kind of procedure can be applied by using 

the wavelet transform and the marginal density instead of 
the band pass filtering. The burst structure, issued of the 
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averaged time-frequency map, was a three dimension 
object (energy over time and frequency) whereas the 
classical ERD was a two dimension object (power over 
time). In order to compare them, we used the concept of 
marginal density in a chosen frequency band. This 
marginal density Dm sums up the energy of the burst over 
the time, with E the scalogram: 

∑=
=

max

min

),()(
f

ff
m ftEtD  

The method adapted to the use of the wavelet 
transform can be computed by following the different 
steps (Fig 5):  

1. raw EEG epoch selection. 
2. wavelet transform of all event-related trials. 
3. marginal density of the time-frequency map to 

obtain energy sample. 
4. averaging of energy samples across all trials. 
5. averaging over time to smooth the data and 

reduce the variability. 

 

 
Figure 5. Principle of time-frequency ERD processing. (a) 
Raw EEG signals, (b) time frequency map (8-12Hz), (c) busrts 
map,  (d) relative power of the averaged bursts map on a 
chosen trigger, only values significantly different from the 
reference are depicted, (e) relative power of the marginal 
density of the averaged map on a chosen trigger, in black the 
significant difference from the reference (dashed rectangular). 
 
Both of these methods bring the description of the 

time course of the cortical activity in correspondence 
with a reference period. The following section describes 
the comparison of them. 

RESULTS 

Signal modeling validation 

In order to validate the chosen model based on the 
extraction of the burst from a time-frequency map, we 
compared the event-related synchronization and 
desynchronization description from the classical method 
of Pfurtscheller and the one based on our burst structure 
(see the precedent section). 

A statistical Wilcoxon parametric test was used to 
know if the two methods are significantly different or 
not. This Wilcoxon test was chosen as it is non 
parametric test (no hypothesis on the sample distribution) 
appropriated for paired samples. The test was performed 
on the 1000 original signals (40 trials on 25 electrodes, 
see Materials and methods, Experimental procedure).  

The first time, the test was applied to compare the 
classical ERD and the marginal density of the time-
frequency map. The result shows that they are not 
significantly different, with α=0.01 and p=0.8736. 

 

 
Figure 6.  No significant difference between ERD from the 
classical method and ERD from the marginal density of the 
time-frequency map. 
 
The second time, the test was applied in order to 

compare the classical ERD and the marginal density of 
the burst structure, i.e. the segmented time-frequency 
map. α =0.01 and p=0.4395.  

 

 
Figure 7.  No significant difference between ERD from the 
classical method and ERD from the marginal density of the 
segmented time-frequency map (burst structure). 
 

As we have proved that the data structure did not 
loose important information, indeed we are able to 
observe the same phenomena as with the classical ERD, 
we can go further in the use of this structure. The next 
section gives an example of this use.  

 

First result of graph matching 

Afterward we evaluated the graph-matching method 
interest. Indeed this latter is able to compare two cortical 
activities and, in the same time, to precise the going 
evolution. We looked on the functional evolution of the 
cortical activity according to the data protocol. 
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The neurophysiologic knowledge brought some 
information about the well known cortical activation. In 
our case, three main tasks should be found, first the 
question hearing activating the auditory cortex then the 
thought activating the prefrontal lobe and last the answer 
enunciation activating the motor cortex. 

The objective of the experimentation was to measure 
the activation delay between each area of interest. We 
chose the middle electrode of each area: P3 in the 
auditory cortex, F4 in the prefrontal lobe and Cz in the 
motor cortex. Then we matched the burst structure 
issued of these three electrodes. The matching uses the 
vertices and edges labels (time, frequency, averaged 
energy and maximum energy burst). These labels give us 
similarity values which are interpreted in accordance to 
the physiological data. 

The following results are one example of what could 
be obtained. By studying the time shift between each 
graph we found a delay of 0.9s from P3 to F4 and of 3.8s 
from P3 to Cz (Fig. 8). So the time delay is going from 
P3 to F4 and later from P3 to Cz. We found again the 
same process as the one described by the 
neurophysiologist. And the results appear to be in the 
same range as the physiological expectations. 

 

 
Figure 8. Description of cortical activity evolution from P3 to 
Cz via F4 by burst structure matching (trial 14, 7-13Hz). The 
evolution features are the following, between P3 and F4: 0.9s 
time shift, between P3 and Cz: 3.8s time shift. 
 

DISCUSSION 

Our goal is the description of brain functioning from 
cognitive tasks to low levels cerebral activations. For that 
purpose, we have developed a generic analysis 
methodology based on a data structure holding all 
information arranged in a hierarchical way. This 
structure -a graph- consists of information from the 
whole brain dimensionalities. The time and frequency 
and energy features are extracted from Morlet wavelet 
decomposition. The spatial dimension is considered by 
the signal origin, i.e. the spatial position of the acquiring 
electrode.  

During a trial the recorded EEG signal comes from 
the confrontation with the stimulus. As the signal is 
represented in our case by graphs, the event-related brain 
activities can be associated to the set of independent 
graphs. Since these activities are related to one main task, 

they are linked as the graphs are linked. The links 
between these graphs are studied by the graph-matching 
technique. Thanks to this technique we should be able to 
add some spatial edges linking the graphs themselves in 
the spatial domain. 

The very important point after the methodology 
adjustment is the method validation. This one has been 
done in two steps. First we have computed the 
ERD/ERS technique on our data set and then we have 
compared these results with those obtained in the same 
way with our signal abstraction. A wilcoxon statistical 
test has demonstrated that they are not significantly 
different. This proves that the data reduction has 
correctly been carried out. Therefore the used of this 
abstraction decreased hugely the amount of data, for 
instance the raw data size was about 20MB for a 
recording of thirty minutes and the reduced data about 
few kilo bytes. Moreover we can study all conventional 
EEG waves (alpha, beta, gamma, …) or subject adapted 
frequency band. 

The second step was to demonstrate the graph-
matching interest in brain activity description. The first 
computation, presented in the last section, showed it is 
possible to have different kind of brain functioning 
information. The time delay gives information about the 
information transfer from one brain area to another; the 
frequency delay shows the rhythm variations and the 
energy variations illustrate the size of the mobilized 
neurons population.  

The results obtained with the presented method are 
encouraging. However some improvements had to be 
brought, mainly in the graph structuring and graph 
matching. First of all, the edge building is still a problem. 
How be sure that two vertices had to be linked? The 
different building possibilities had to be analyzed in a 
deeper way and tested with simulated data. Secondly the 
similarity functions used in the graph matching process 
are actually very simple. If they allow a structure 
validation they do not have an acceptable behavior. Our 
current work is based on a theoretical expression of the 
distance function on the time, frequency and spatial 
domain. As the physiological mechanisms are different 
for the information transfer (spatial aspect), transmission 
and reaction time (time aspect) or rhythm variations 
(frequency aspect), a specific formulation is needed for 
all these dimensions. The study complexity is linked to 
the non-linear behavior of brain activity for each of these 
dimensions. Lastly some optimized matching algorithm 
can improve the computation speed. 

  

REFERENCES 

 
1. Beucher, S. and Meyer, F. The morphological approach to 
segmentation: The watershed transformation. Mathematical Morphology 
in Image Processing, E.R. Dougherty, Editor, pp. 433-481, Marcel Dekker 
Inc. New York, 1993 



Structural analysis and application to brain imaging 

 

43 
Copyright © 2006 C.M.B. Edition 

 

2. Da Silva, L.F.. Neural mechanisms underlying brain waves: from neural 
membranes to networks,  Electroencephelography  and clinical 
Neurophysiology, 79, 81-93 1991 
3.Dale, A.M. and Halgren, E. Spatiotemporal mapping of brain activity by 
integration of multiple imaging modalities. Current Opinion in 
Neurobiology, Volume 11, Issue 2, , 1 April 2001, Pages 202-208.  
4. Damasio, A. In: Sem. Neurosci. A synchronous activation in multiple 
cortical areas: a mechanism for recall, vol. 2, pp. 287–296, 1990. 
5. Durka, P.J. From wavelets to adaptive approximations: time-frequency 
parameterization of EEG, Biomed Eng Online, July 2003. 
6. Elul, R. The genesis of the EEG, International Review of Neurobiology, 
vol. 15, pp. 227–272, 1972. 
7. French, C.C. and Beaumont, J.G. A critical review of EEG coherence 
studies of hemisphere function. Int J Psychophysiol. 1984 Mar;1(3):241-
54. 
8. Gevins, A.S. and Remond, A. (Eds) (1987). Methods of analysis of 
brain electrical and magnetic signals. Handbook of 
Electroencephalography and Clinical Neurophysiology, Vol. 1: Methods 
of Analysis of Brain Electrical and Magnetic Signals, Elsevier: 
Amsterdam. 541-582 
9. Gold,S. and Rangarajan, A. Graph matching by graduated assignment, 
IEEE Computer Vision and Pattern Recognition Conference (CVPR), 
1996, pp. 239–244. 
10. Korzeniewska, A., Manczak, M., Kaminski, M., Blinowska, KJ,. and 
Kasicki, S. Determination of information flow direction among brain 
structures by a modified directed transfer function (dDTF) method. J 
Neurosci Methods. 2003 May 30;125(1-2):195-207. 
11. Lachaux, J.P., Lutz, A., Rudrauf, D., Cosmelli, D., Le Van Quyen, M.,  

Martinerie, J. and Varela, F.., Estimating the time-course of coherence 
between single-trial brain signals: an introduction to wavelet coherence, J 
Neurophysiol Clin 32 (2002), pp. 157–174.  
12. Lin, Z., Chen, J.D.., Advances in time–frequency analysis of 
biomedical signals, Crit Rev Biomed Eng 24 (1996) (1), pp. 1–72.  
13. Meyer, Y. Les ondelettes, algorithmes et applications. Armand Colin, 
Paris, 1992. 
14. Nilsson, N. Principles of Artificial Intelligence. Tioga, 1980. 
15. Pfurtscheller, G. and Da Silva, F.L. Event-related EEG/MEG 
synchronization and desynchronization: basic principles, Clinical 
Neurophysiology, vol. 110, pp. 1842–1857, 1999. 
16. Ranganath, H. and Chipman, L. Fuzzy relaxation approach for inexact 
scene matching, In International Conference on Image and Vision 
Computing (IVC), vol. 9, no. 10, 1992, pp. 631–640. 
17. Roerdink, J. and Meijster, A. The watershed transform: 
Definitions,algorithms and parallelization strategies. Fondamenta 
Informaticae, 2001. 
18. Rosso, O.A., Martin, M.T., Figliola, A., Keller, K., Plastino, A. EEG 
analysis using wavelet-based information tools. J Neurosci Methods. 2006 
Jun 15;153(2):163-82. Epub 2006 May 3. 
19. Sanfeliu, A. and Fu, K. A distance measure between attributed 
relational graphs for pattern recognition.. IEEE Trans. on SMC, 1983. 
20. Schlögl, A.. The electroencephalogram and the adaptive autoregressive 
model: Theory and applications. PhD thesis, Medizinische Informatik and 
Bioinformatik, Graz, 2000. 
21. Varela, F., Lachaux, J., Rodriguez, E. and Martinerie, J. The brainweb: 
phase synchronization and large-scale integration, Nat. Rev. Neurosci., vol. 
19, pp. 229–239, 2001. 

 

 


