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Ellagic acid ameliorates cuprizone-induced acute CNS inflammation via restriction of 
microgliosis and down-regulation of CCL2 and CCL3 pro-inflammatory chemokines 
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Abstract: Ellagic acid (EA) is a natural phenol antioxidant with various therapeutic activities. However, the efficacy of EA has not been exa-
mined in neuro-inflammatory conditions. Microglia making the innate immune system of the central nervous system (CNS) and are imperative 
cellular mediators of neuro-inflammatory processes. In this study, neuro-protective effects of EA on cuprizone (Cup)-induced acute CNS inflam-
mation evaluated. C57BL/6J mice were fed with chow containing 0.2 % Cup for 3 weeks to induce acute neuro-inflammation predominantly 
in the corpus callosum (CC). EA was administered at different doses (40 or 80 mg/kg body weight/day/i.p) from the first day of the Cup diet. 
Microglia activation (microgliosis) and expression of microglia related chemokines during Cup challenge were examined. Results shows that 
EA significantly decreased the number of activated microglia cells (Iba-1+ cells) and also restricted proliferation of these cell population (Iba-1+/
Ki67+ cells) in dose dependent manner. Consequently, concentration of microglial pro-inflammatory chemokines including monocyte chemoat-
tractant protein-1/Chemokine (C-C motif) ligand 2 (MCP-1/CCL2), and macrophage inflammatory protein 1-alpha/Chemokine (C-C motif) 
ligand 3 (MIP-1-α/CCL3) dramatically reduced in CC after EA treatment. According to this results, we conclude that EA is a suitable therapeutic 
agent for moderation brain damages in neuro-inflammatory diseases.
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Introduction

Microglia are a resident macrophage cells, placed 
in the brain and consist of 10-15% of all cells found 
inside the brain (1, 2). They act as the main and first 
line of active immune defense in the central nervous 
system (CNS) and distributed in large non-overlapping 
regions throughout the CNS (3-5). It has been hypothe-
sized that auto-reactive lymphocytes pervade the CNS 
and together with the resident microglia generate local 
inflammation which leads to further oligodendrocytes 
(OLGs) damage and demyelination (6). Cuprizone (bis-
cyclohexanone-oxalyldihydrazone, Cup) is a copper 
chelating agent and is frequently used to study factors 
that affect OLG death and myelin loss (7). It has been 
shown that inflammation could have harmful effects 
on the brain cells function and natural antioxidants 
have a determinant role in controlling this process (8, 
9). However, detailed evaluation of these natural com-
pounds and their significance in Cup-induced acute neu-
ro-inflammation are yet to be understood. Polyphenols 
present in Pomegranate are strong chemopreventive and 
antioxidants agents but with a short half-life and low 
bioavailability. For instance, the main pomegranate po-
lyphenol, punicalagin, is not absorbed in its intact form 
but is hydrolyzed to Ellagic acid (EA) moieties. Ellagic 
acid (2, 3, 7, 8-tetrahydroxybenzopyrano [5, 4, 3-cde] 
benzopyran-5-10-dione), a naturally occurring tannic 
acid derivative, affects the neural cell-fate with its anti-

inflammatory, anti-oxidative stress and anti-depressant 
property (10-14). Previous studies have shown that EA 
regulates inflammatory responses in several inflamma-
tory diseases such as animal models of experimental 
colitis (15), acute lung injury (16) and carrageenan-in-
duced acute inflammation (17). EA has anti-inflamma-
tory properties due to nuclear transcription factor-kap-
paB (NF-κB) suppression and down-regulation of indu-
cible nitric oxide synthase (iNOS), cyclooxygenases-2 
(COX-2), interleukin-6 (IL-6) and tumor necrosis factor 
alpha (TNF-α) on colon carcinogenesis in rats (18). Mi-
croglia have numerous roles in regulating homeostasis 
in the CNS, and its activation is thought to play a role 
in the etiology of the  neuro-inflammatory and autoim-
mune diseases. In Cup model, apoptosis of OLGs occur 
mainly during the first three weeks, followed by macro-
phages/microglia and astroglia activation, which peaks 
after 3-4 weeks and persists for some time after ending 
Cup exposure (19, 20). 

However, as macrophages and microglia are pheno-
typically mostly the same, and literature rarely discri-
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minates between the 2 cell populations, we here refer to 
microglia and/or macrophages as microglia.

When exogenous or endogenous stimuli generate 
malfunction in microenvironmental homeostasis in 
CNS, microglia vitally regulate the fate of other neural 
and glial cells. In this study we, for the first time, eva-
luates effect of EA on microglia activation (microglio-
sis) and secretion of microglial related immune media-
tors including, monocyte chemoattractant protein-1 also 
known as Chemokine (C-C motif) ligand 2 (MCP-1/
CCL2), and macrophage inflammatory protein 1-alpha 
also known as Chemokine (C-C motif) ligand 3 (MIP-
1-α/CCL3) during Cup challenge. In the present study, 
we provide evidence for the significance of EA as a pi-
votal therapeutic agent in the neuro-inflammatory and 
autoimmune diseases.

Materials and Methods

Induction of toxic acute inflammation
Seven to 8 week old male C57BL/6 mice with body 

weight ranging from 18 to 20 g were purchased from 
Pasteur Institute, Tehran, Iran. The animals had free 
access to food and water and were maintained on a 12-h 
light/dark cycle at room temperature (20-22°C). Acute 
inflammation was induced by feeding a diet containing 
0.2 % (w/w) Cup mixed into ground standard rodent 
chow for 3 weeks. All animal manipulations were car-
ried out according to the Ethical Committee for the use 
and care of laboratory animals of Tehran University of 
Medical Sciences (TUMS). Every possible effort was 
made to minimize the number of animals used and their 
suffering.

Study design and groups
Twenty four mice were divided randomly into four 

groups: (i) control group (n=6) received normal powde-
red chow with intraperitoneal (i.p.) injection of 1:9 ratio 
of dimethyl sulfoxide (DMSO) and phosphate buffered 
saline (PBS) solution as vehicle every day for 3 weeks; 
(ii) Cup group (n=6) were fed with powdered chow 
mixed with 0.2% Cup with i.p. injection of vehicle, 
every day for 3 weeks; (iii) treatment groups that were 
divided into two separate subgroups (6 mice per sub-
group), treated with 40, or 80 mg/kg body weight/day 
of EA (i.p.) dissolved in vehicle during the 3 week of 
Cup feeding period. The dosages and route used for EA 
administration were selected based upon previous stu-
dies (21, 22). All measurements were performed by an 
observer blinded to group assignments. All mice were 
investigated by molecular and histopathological assays.

Tissue preparation and staining
Animals were euthanized using i.p. ketamine (50 

mg/kg) and xylezine (4 mg/kg), followed by cervical 
dislocation and opening the diaphragm. Thereafter, 
mice were transcardially perfused first with PBS and 
then with 4% paraformaldehyde (PFA) in PBS (pH 
7.4). Brains were dissected from the skull and post-
fixed overnight in 4% PFA in BPS at 4oC. The next day 
the brains were rinsed ice-cold with 30% sucrose in 
BPS and were embedded in optimal cutting tempera-
ture compound (OCT, Tissue Tek) and stored in -80oC. 
Fixed brains were coronally sliced (10 μm thickness) 

using the floor-standing fully automatic cryostat (MNT-
SLEE, Mainz GmbH, Germany), and white matter cor-
pus callosum (CC) were identified in accordance with 
the mouse brain atlas (http://www.hms. harvard.edu/re-
search/brain/atlas.html). Hematoxylin and eosin (H&E) 
staining was performed to study Cup induced reactive 
gliosis and trans-endothelial migration of immune cells 
in the CC region.

Immunofluorescence (IFS) labeling
The embedded brains in OCT were serially sectioned 

(10 μm) in the coronal planes with a cryostat, and col-
lected onto poly-L-lysine coated cover slips. The rostral 
part of the CC was used for tissue analysis. The sections 
were air dried and fixed by immersion in cold acetone. 
The sections were then rehydrated in PBS and incubated 
in blocking solution for block non-specific binding, and 
afterwards incubated in permeabilization buffer. The 
sections were then incubated with appropriately prima-
ry antibody at 4oC overnight followed by washing and 
further incubation (4 h) with secondary antibodies dilu-
ted in antibody buffer. Primary antibodies were: mouse 
monoclonal antibodies to ionized calcium binding adap-
tor molecule 1 (Iba-1) as activated microglia/macro-
phage marker (1:300; Santa Cruz Biotechnology), goat 
monoclonal antibodies to nuclear antigen Ki67 as cellu-
lar proliferation marker (1:300; Santa Cruz Biotechno-
logy). The secondary antibodies (Santa Cruz Biotech-
nology) were: fluorescein isothiocyanate (FITC) conju-
gated goat anti-mouse IgG (1:1000) to detect Iba-1, TR 
conjugated rabbit anti-goat IgG (1:1000) to detect Ki67. 
All sections were counterstained with DAPI to visualize 
the nuclei. Negative controls were obtained by omitting 
either the primary or secondary antibody which gave 
no signal (data not shown). All analysis were examined 
using a fluorescence microscope (Olympus BX51), and 
images were captured using a digital camera (Olympus 
DP72) (23).
 
Gene expression analysis

Total RNA extraction, cDNA synthesis and quan-
titative reverse transcription PCR (qRT-PCR) were 
performed for Iab-1, Caspase-3, CCL2, and CCL3 as 
described previously (24, 25). In brief, after brain re-
moval, rostral CC was dissected on ice and placed in 
RNAase free tubes, snap frozen and stored at -80°C 
until use. Samples were weighed (range of 10-20 mg) 
and mRNA was extracted according to the AccuZolTM 
manufacturer’s instructions (BIONEER) and dissolved 
in 50µl RNase-free water. Purified RNA samples were 
converted into cDNA (5µg per 20μl reaction volume) 
using the AccuPower ready-to-use reverse transcrip-
tion kit (BIONEER). 1 µg of synthesized cDNA was 
used for SYBR Green-based real-time RT-PCR using 
2×Greenstar qPCP kit (BIONEER). For each time point, 
cDNA was pooled from three mice treated under identi-
cal conditions. Thermocycling parameters were as fol-
low: one cycle at 95°C for 10 min, one cycle at 95°C 
for 20 s and one cycle at 58°C for 45 s followed by 
40 amplification cycles at 95°C for 30 s and the primer 
probe pairs indicated in table1. Values from β-actin was 
used to loading normalization for each sample. Relative 
changes expression were determined using the ΔΔCt 
method relative to gene expression values for control 
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enhancement of nuclear cells/gliosis after 3 weeks of 
Cup administration compared to the control mice (P < 
0.001, Fig. 1A, B). Administration of EA during Cup 
challenge reduced the reactive gliosis and trans-endo-
thelial migration of immune cells across the blood-brain 
barrier (BBB) toward CC region compared to the Cup 
group in a dose dependent manner (P < 0.05 and P < 

mice. GenePattern 2.0 was used for analysis of relative 
expression patterns (26).

Protein expression analysis
Mice CC was isolated as described above, then 5 mg 

of freshly frozen tissue was homogenized using 1 ml 
of same ice-cold lysis buffer used in western blotting 
supplemented with complete protease inhibitor cocktail 
(Roche, Mannheim, Germany) and centrifuged twice 
at 14.000 rpm (22066 g) for 15 min at 4°C. Total pro-
tein concentrations in the supernatants were determi-
ned using the BCA method. The supernatant was filte-
red through a 0.45 µm filter (Sigma-Aldrich) and then 
CCL2, CCL3, and cleaved Capase-3 protein levels were 
measured by a commercially available Enzyme-linked 
immunosorbent assay (ELISA) kits (R&D systems, 
Minneapolis, MN, USA) following the manufacturer’s 
instructions. Standard curve and sample concentrations 
were calculated based on the mean of triplicates for 
each dilution or sample (27, 28).

Quantification of parameters
Particular area was defined in the ventral body of the 

CC for quantification of cell number to ensure similar 
topography and avoid errors due to the differences in 
orientation of planes. Cells were counted in the speci-
fied areas of matched planes using ImageJ software. 
The percentage of cell was determined with respect to 
the cell number in the CC in the control animals. Quan-
tification of gliosis (H&E staining) was performed by 
manual counting of the number of positive structures 
in the CC. After IFS staining, Iba-1 (microglia marker) 
and Ki-67 (proliferation marker) cells were measured in 
CC area using ImageJ software. The background was 
subtracted after importing the images in ImageJ. Simi-
lar threshold level was set for every image, on the dark 
background and the positive signals were quantified. 
Two independent and blinded readers performed the 
scoring, and the results were averaged. 

Statistical analysis
For quantitative measurement, the groups were ana-

lyzed using one-way analysis of variance (ANOVA) or 
the unpaired t-test. A Bonfrroni post hoc test for mul-
tiple group comparisons was used when appropriate. 
Each experiment was repeated 3 times and the results 
were considered significant at P<0.05.

Results

EA inhibits general gliosis in corpus callosum
Using H&E staining, our data indicated a substantial 

Figure 1. Evaluation of gliosis during EA treatment. Hematoxy-
lin and eosin (H&E) staining was performed to study effect of dif-
ferent doses of EA treatments on Cup challenge in the CC region. 
Cu challenge significantly induced reactive gliosis and trans-en-
dothelial migration of immune cells in the CC region compared to 
the control mice (A, B). Moreover, quantification of H&E indicate 
significantly lower amount of cell infiltration after EA treatments 
in dose dependent manner (C, D). vehicle+Con: mice on a regu-
lar diet and injected with vehicle for 3 weeks (n=3), vehicle+Cup: 
cuprizone plus vehicle injection for 3 weeks (n=3), EA40+Cup: 
cuprizone mice were injected with 40mg/kg of EA for 3 weeks 
(n=3), EA80+Cup: cuprizone mice were injected with 80mg/kg of 
EA for 3 weeks (n=3). Scale bar = 75μm. Data are expressed as 
means ± SEM. ٭compared to control mice, #compared to cuprizone 
(#P < 0.05, ##P < 0.01 and ٭٭٭P < 0.001).

Gene Name                                        Primer Sequence

Caspase-3 Forward 5'- TCTACAGCACCTGGTTACTATTCC -3'
Reverse 5'- TTCCGTTGCCACCTTCCTG -3'

CCL2 Forward 5'- GTTGGCTCAGCCAGATGCA -3'
Reverse 5'- AGCCTACTCATTGGGATCATCTTG -3'

CCL3 Forward 5'- CCAAGTCTTCTCAGCGCCAT -3'
Reverse 5'- TCCGGCTGTAGGAGAAGCAG -3'

Iba-1 Forward 5'- CAGACTGCCAGCCTAAGACA -3'
Reverse 5'- AGGAATTGCTTGTTGATCCC-3'

β-actin Forward 5'- AATTCCCAGCTGACGGAGATCACA -3'
Reverse 5'- TCTACTCGAAGCCTTGTCAGCACA -3'

Table 1. Sequence of specific primers used for q-PCR.
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0.01, Fig. 1C, D).

EA restricts activation of microglia in corpus callo-
sum

After 3 weeks of Cup feeding the amount of activa-
ted microglia (Iba-1+) cells in CC were significantly in-
creased compared to the control group indicating induc-
tion of acute inflammation in brain (P <0.001, Fig. 2A, 
B). Furthermore, administration of Cup significantly sti-
mulates population of Iba-1+/Ki67+ double positive cells 
in CC region indicating high proliferation of activated 
microglia cells in brain (P <0.001, Fig. 2A, B). EA treat-
ment exhibited a protective effect on acute inflammation 
via restriction of microglia activation (Iba-1+) and proli-
feration (Iba-1+/Ki67+) in the dose dependent manner (P 
<0.05, P <0.01, Fig. 2C, D). In addition, in mice which 
received only 80mg/kg, total cell proliferation (Ki67+) 
significantly decreased compared to the Cup mice (P 
< 0.05), indicating specific anti-proliferative effects of 
EA on glia cells (Fig. 2D). By quantitative PCR analy-
sis, we observed a significant increase in Iba-1 mRNA 
expression in Cup compared to the control mice (P < 
0.01, Fig. 3A). Remarkable suppression of Iba-1 mRNA 
expression detected only after high dose EA treatments 
(80mg/kg) compared to the Cup mice (P < 0.05, Fig. 3). 
Administration of EA at lower dose (40mg/kg) had not 
a significantly effect on Caspase-3 mRNA expression 
compared to the Cup mice (Fig. 3B).

High-dose of EA reduces apoptosis in corpus callo-
sum

By quantitative PCR analysis we observed a signifi-
cant increase in Caspase-3 mRNA expression in the Cup 
group compared to the control mice (P < 0.001, Fig. 

3B). Interestingly, there was a considerable decrease in 
Caspase-3 mRNA during EA treatment compared to the 
Cup mice in a dose dependent manner (P < 0.05, P < 
0.01, Fig. 3B). By ELISA analysis, we observed a signi-
ficant increase in cleaved Caspase-3 protein expression 
in Cup compared to the control mice (P < 0.001, Fig. 
4A). Remarkable suppression of cleaved Caspase-3 
protein expression detected after 80mg/kg EA treat-
ments compared to the Cup mice (P < 0.05 and P < 0.01, 
Fig. 4A). Administration of EA at lower dose (40mg/
kg) had not a significantly effect on cleaved Caspase-3 
protein expression compared to the Cup mice (Fig. 4A).

High-dose of EA decreases expression of CCL2 che-
mokine in corpus callosum

Important activated microglia-derived chemokine, 
CCL2 that mediates neuro-inflammatory responses 
was selected for evaluation of effects of EA treatment 
on Cup-mediated neuro-inflammation. PCR analysis 
showed a significant enhancement of CCL2 at mRNA 
levels after 3 weeks of Cup feeding compared to the 
control mice (P < 0.01, Fig. 3C). Administration of EA 
during the Cup treatment declined significantly the ex-
pression of CCL2 in higher dose (80mg/kg) indicated 
EA mediated anti-inflammatory effect in this model (P 
< 0.05, Fig. 3C). ELISA analysis of CC region tissue 
showed a significant increase in CCL2 protein levels in 
the Cup fed mice compared to the control after 3 weeks 
treatment (P < 0.01, Fig. 4B). Our results demonstra-
ted a considerable decrease in CCL2 protein during EA 
treatment compared to the Cup mice only in higher dose 
(80mg/kg, P <0.05, P <0.01, Fig. 4B).

 

Figure 2. Effects of EA treatment on microglial population and 
proliferation.  IFS of coronal sections through the CC showing 
labeling with a monoclonal antibody that is specific to the micro-
glial marker (Iba-1, green), and proliferation marker (Ki67, red) 
along with DAPI nuclear stain (blue). Iba-1 staining showed si-
gnificantly increasing in immunoreactivity after 3 weeks of Cup 
treatment (A, B) that is significantly decreased throughout 3 week 
co-treatment with EA (C, D). Iba-1 and Ki67 double-positive cells 
significantly increased after Cup treatment (A, B) and decreased 
dose dependently throughout TP treatment (C, D). Scale bars 25 
µm. vehicle+Con: mice on a regular diet and injected with vehicle 
for 3 weeks (n=3), vehicle+Cup: cuprizone plus vehicle injection 
for 3 weeks (n=3), EA40+Cup: cuprizone mice were injected with 
40mg/kg of EA for 3 weeks (n=3), EA80+Cup: cuprizone mice 
were injected with 80mg/kg of EA for 3 weeks (n=3). Data are 
expressed as means ± SEM. ٭compared to control mice, #compared 
to cuprizone (#P < 0.05, ##P < 0.01 and ٭٭٭P < 0.001).

Figure 3. Analysis of astroglia, chemokine and apoptosis rela-
ted transcripts after EA treatment. Using quantitative PCR tech-
nique, the effects of EA on Iba-1 (A), Caspase-3 (B), CCL2 (C) 
and CCL3 (D) were tested in CC region of mice after 3 weeks 
treatment. Quantitative RT-PCR was conducted and results were 
normalized to β-actin and reported as % changes to control group. 
vehicle+Con: mice on a regular diet and injected with vehicle for 
3 weeks (n=3), vehicle+Cup: cuprizone plus vehicle injection for 3 
weeks (n=3), EA40+Cup: cuprizone mice were injected with 40mg/
kg of EA for 3 weeks (n=3), EA80+Cup: cuprizone mice were in-
jected with 80mg/kg of EA for 3 weeks (n=3). Data are presented 
as means ± SEM, analyzed using two-way ANOVA.٭compared to 
control mice, #compared to cuprizone (#P < 0.05, ٭٭, ##P < 0.01 and 
.(P < 0.001٭٭٭
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EA decreased expression of CCL3 chemokine in cor-
pus callosum

Another important activated microglia-derived che-
mokine, CCL3 that mediates neuro-inflammatory res-
ponses was selected for evaluation of effects of EA 
treatment on Cup-mediated neuro-inflammation. PCR 
analysis showed a significant enhancement of CCL3 at 
mRNA levels after 3 weeks of Cup feeding compared 
to the control mice (P < 0.001, Fig. 3D). Administration 
of EA during the Cup treatment declined significantly 
the expression of CCL3 only in a dose dependent man-
ner indicated EA mediated anti-inflammatory effect in 
this model (P < 0.05, P < 0.01, Fig. 3D). ELISA analy-
sis of CC region tissue showed a significant increase in 
CCL3 protein levels in the Cup fed mice compared to 
the control after 3 weeks treatment (P < 0.001, Fig. 4C). 
Administration of EA during the Cup treatment signi-
ficantly decreased the expression of CCL3 protein in a 
dose dependent manner (P <0.05, P < 0.01, Fig. 4C).

Discussion

Medicinal plants are capable to produce a great di-
versity of physiologically active ingredients that exert 
their properties via the communication with biochemi-
cal mechanisms. Thus, there has been strong struggle 
to progress of helpful ingredients from plant sources in 
order to protect human brain from external and inter-
nal damages (29). Majority of considerations have been 
paid on a wide range of plant-derived antioxidants that 
can scavenge free radicals and protect glial and neural 
cells from oxidative damage, inflammation and apop-
tosis (29). Among these phytochemicals, EA occurs in 
nuts and fruits in either bound as ellagitannins or its free 
form as EA-glycosides (30, 31). It has been shown that 

EA exerts strong neuro-protective properties through 
its antioxidant effects, stimulation of various cell/
molecular pathways, iron chelation, and mitigation of 
mitochondrial dysfunction (32). Inflammation is impor-
tant in the pathogenesis of autoimmune demyelinating 
diseases and represents a target for multiple sclerosis 
(MS) treatment. Differential expression of a number of 
chemokines has been demonstrated in both acute and 
chronic MS lesions, including CCL2 and CCL3 (33). 
OLGs damage, induction of glia activation and produc-
tion of inflammatory cytokines and chemokines are hap-
pened during early stages of toxic demyelination (34). It 
is believed that during Cup challenge pro-inflammatory 
mediators secreted by activated neuroglia disrupt BBB 
and stimulate immune response (35, 36). It has been 
described that infiltration of peripheral macrophages is 
dependent on the CCR2/CCL2 signaling axis and secre-
tion of CCL2 was up-regulated by activated microglial 
cells during Cup challenge (37). On the other hand, it 
has been shown that myelin debris has a controlling ef-
fect on microglial activation, phagocytosis and thus re-
myelination process (38, 39). Notably, several authors 
also reported that microglia might actively take part in 
myelin breakdown through stripping myelin from axons 
(40-42). The chemokines CCL2 and CCL3, and Interfe-
ron gamma-induced protein 10 (IP-10) also known as C-
X-C motif chemokine 10 (CXCL10) have been shown 
to induce chemotaxis in microglia (43-45). Likewise, in 
this study we showed that after Cup challenge, CCL2 
and CCL3 chemokines expression is up-regulated in the 
CC region and is often accompanied by reactive micro-
gliosis and monocyte infiltration into the injured area. In 
this study, EA decreased Iba-1 expression, a major mar-
ker of microgliosis, at both protein and mRNA levels.  
Specific decreasing of microgliosis during EA treatment 
is accordance with reduction of CCL2 and CCL3 che-
mokines that are mainly produced by activated micro-
glial in brain. On the other hand, after Cup challenge, 
the caspase-3 level was elevated and treatment with EA 
extensively declined this amount. In CNS, astrocytes 
reactivity and microglia activation are important compo-
nents of the lesion environment that can impact demye-
lination process (46, 47). However, prolonged reactive 
gliosis is not able to block the progression of Cup lesion 
(48). Our data indicated that EA treatment reduced the 
hematopoietic cell infiltration and reactive gliosis du-
ring Cup challenge in the CC region. Similarly, Chen 
and colleagues reported that EA treatment (40 mg/kg/
orally) protected rats from hypoxic-ischemic (HI) brain 
injury by inhibiting inflammatory responses, apoptosis, 
and modulating of apoptotic and MAPK pathways (49). 
Also, Rojanathammanee and colleagues have reported 
that extract of pomegranate polyphenols inhibits T cell 
activity and microglial activation in a transgenic mouse 
model of Alzheimer disease (50). Based on these obser-
vations, we conclude that EA not only has protective 
effect in mature OLGs via blocking apoptosis, but also 
adjusts immune response via decreasing microgliosis 
and controlling of pro-inflammatory chemokines during 
Cup-induced reactive gliosis. A better understanding of 
EA immunomodulatory effects may allow the develop-
ment of new strategies for pharmacological interven-
tions aimed at minimizing damage during CNS related 
auto-immune disorders.

Figure 4. Evaluation of protein levels of microglial related che-
mokines in brain after EA treatment. Using quantitative ELISA 
technique, the effects of EA on cleaved Caspase-3 (A), CC2 (B) 
and CCL3 (C) were tested in CC region of mice after 3 weeks 
treatment. vehicle+Con: mice on a regular diet and injected with 
vehicle for 3 weeks (n=3), vehicle+Cup: cuprizone plus vehicle 
injection for 3 weeks (n=3), EA40+Cup: cuprizone mice were in-
jected with 40mg/kg of EA for 3 weeks (n=3), EA80+Cup: cupri-
zone mice were injected with 80mg/kg of EA for 3 weeks (n=3). 
Data are presented as means ± SEM, analyzed using two-way 
ANOVA.٭compared to control mice, #compared to cuprizone (٭, #P 
.(P < 0.001٭٭٭ P < 0.01 and## ,٭٭ ,0.05 >
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We conclude that EA providing a suitable environ-
ment to fight against OLGs loss via reduction of apop-
tosis, down regulation of CCL2 and CCL3 chemokines 
and reduction of gliosis. Taken together, our leading 
in vivo study established the hypothesis that reveals 
EA is a suitable therapeutic agent for moderation brain 
damages, based on its role in alleviation of CNS acute 
neuro-inflammation.
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