Cellular and Molecular Biology
E-ISSN : 1165-158X / P-ISSN : 0145-5680
www.cellmolbiol.org

Original Research

Pulicaria vulgaris Gaertn. essential oil: an alternative or complementary treatment for Leishmaniasis

Mehdi Sharifi-Rad¹, Bahar Salehi²-³*, Javad Sharifi-Rad⁴*, William N. Setzer⁵, Marcello Iriti⁶

¹Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol, Iran
²Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
³Student Research Committee, Shahid Beheshti University of Medical Sciences, 22439789 Tehran, Iran
⁴Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
⁵Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
⁶Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy

Correspondence to: bahar.salehi007@gmail.com; javad.sharifirad@gmail.com

Received September 12, 2017; **Accepted** October 26, 2017; **Published** June 25, 2018

Abstract: Leishmaniasis is a neglected parasitic protozoan disease that affects approximately 12 million people and represents a public health problem in Iran. The objectives of this study were to obtain the essential oil (EO) from *Pulicaria vulgaris* Gaertn., growing in Iran and to carry out *in-vitro* antileishmanial screening of the EO against promastigotes of *Leishmania major* and *Leishmania infantum*. The EO from the aerial parts of *P. vulgaris* was extracted by hydrodistillation. Serial dilutions of the EO were screened for *in-vitro* antileishmanial activity using 96-well microtiter plates. The *P. vulgaris* EO was active against the promastigote forms of *L. major* and *L. infantum*, with *IC₅₀* values of 244.70 and 233.65 µg/mL, respectively. *Pulicaria vulgaris* EO may serve as an alternative or complementary treatment for leishmaniasis.

Key words: Protozoal diseases; Parasites; Thymol; Iranian plants.

Introduction

An estimated two million people per year are afflicted by the parasitic protozoal disease leishmaniasis (1). Leishmaniasis presents a wide spectrum of clinical manifestations from cutaneous lesions to visceral distress (2-4). Visceral leishmaniasis is a serious threat to children’s health. In endemic regions, children are at much greater risk compared to adults. Paediatric leishmaniasis presents symptoms that include paleness, intermittent fever, tendency to anorexia, abdominal distension, and weight loss, as well as hepatomegaly, splenomegaly, lymph node enlargement, anaemia, thrombocytopenia, hypergammaglobulinemia and leukopenia (5).

Protocols for the treatment of leishmaniasis remain problematic; currently available chemotherapeutics are associated with various limitations including the need for long-term treatments, adverse side effects, and limited or reduced efficacy (4). As a result, there is an urgent need to find novel therapeutic agents or treatment regimens that are effective in treating leishmaniasis.

In recent years, phytotherapy has been shown to be useful for treatment of many human and animal diseases (6-18). However, plants have been immensely utilized in traditional healing systems, and in only a few cases have their curative potentials in human diseases been confirmed (19-27). Essential oils (EOs) are one of the options that have been recently used to treat a variety of diseases. EOs are complex mixtures of aromatic plant secondary metabolites, volatile, and lipophilic (28-30). Health care researchers and practitioners increasingly consider use of EO-bearing plants.

The genus *Pulicaria* Gaertn. (Asteraceae), according to Iranica flora, includes five species that exist in Iran: *P. dysenterica* (L.) Bernh., *P. arabica* (L.) Cass., *P. gnaphalodes* (Vent.) Boiss., *P. salvifolia* Bunge and *P. vulgaris* Gaertn. *P. vulgaris* is an annual plant that has many branched reddish stems and small (6-12 mm) yellow flower heads. To our knowledge, there have been no previous studies on the anti-leishmanial activity *P. vulgaris* EO.

Materials and Methods

Pulicaria vulgaris Gaertn. was collected during the flowering period, March 2014, from the area surrounding Hamun Lake, Zabol, in Sistan and Baluchestan Province of Iran. The plant species was identified at Ferdowsi University, where a voucher specimen (no. 26432) was deposited in Mashhad Herbarium. For the EO extraction, the dried aerial parts (stems, leaves, and flowers) (200 g) of *P. vulgaris* were subjected to hydrodistillation for 3 hours using a Clevenger-type apparatus based on method described by the British Pharmacopoeia (31). The EO obtained was dried using anhydrous sodium sulphate (Sigma-Aldrich Corp., St. Louis, MO, USA) and the EO obtained was stored at 4°C until analysis and further assays.

The EO of *P. vulgaris* initially was dissolved in 5% dimethyl sulfoxide (DMSO) (Sigma-Aldrich Corp., St. Louis, MO, USA)/95% water and further diluted
with RPMI 1640 medium (GIBCO, Grand Island, New York, USA). The concentration of DMSO in the wells was not higher than 0.01%. For assessing the antileishmanial activity of the EO, logarithmic phase promastigotes of Leishmania major (MRHO/IR/75/ER) and Leishmania infantum (MCAN/IR/96/LON49) (1 × 10⁶ cells/mL) were seeded in a 96-well microtiter plate along with serial dilutions (600, 300, 150, 100, 50, 25, 20, 10, 5, and 0 μg/mL w/v) of the EO and afterwards incubated at 24°C, for 72 hours. Antileishmanial activity was determined by light microscope and the MTT assay. The concentration inhibiting parasite growth by 50% (IC₅₀) was calculated by using the formula: EXP (LN (conc >50%) - ((signal >50%-50%)/(signal >50%-signal<50%))*LN (conc >50%/conc <50%)); where EXP is exponential and LN is natural logarithm (32).

Statistical analysis
Data obtained were subjected to analysis of variance (ANOVA) following a completely random design to determine the least significant difference (LSD) at P < 0.05 by SPSS v. 11.5. All assays were carried out in triplicate.

Results and Discussion
The % survival of L. infantum and L. major promastigotes after 72 hours treatment, with various concentrations of P. vulgaris EO is shown in Table 1.

The results of this study showed that P. vulgaris EO had anti-leishmanial effects. In particular, P. vulgaris EO was active against the promastigote forms of L. major and L. infantum, with IC₅₀ values of 244.7 and 233.6 μg/mL, respectively. DMSO, used as the co-solvent for the EO, served as negative control, and had no effect on survival of L. major and L. infantum promastigotes. Torres-Santos et al. (33) have reported an IC₅₀ value of 83 μg/mL for glucantime as antileishmanial drug.

Sharifi-Rad et al. (32) investigated the chemical composition of P. vulgaris EO from the Zabol region. They reported that the main components were thymol, p-menth-6-en-2-one (carvotanacetone), thymol isobutyrate, menthan-2-one, 1-methyl-1,2-propanedioine, 2,5-dimethoxy-p-cymene, myrtenol, linalool, and β- myrcene with 50.2%, 20.2%, 16.9%, 4.3%, 4.1%, 4.0%, 1.2%, 1.1%, and 1.9% in the EO, respectively (Table 2).

The high thymol content in P. vulgaris EO is notable; thymol has shown in vitro and in vivo antileishmanial activity against Leishmania panamensis (34) and L. infantum ssp. chagasi (35). In terms of effectiveness, the EO of this plant is certainly more active than the main components alone. However, antileishmanial activity of P. vulgaris EO was not as active as glucantime, and several essential oils reported in the literature have shown leishmanicidal activities with IC₅₀ in the range of 2 to 100 μg/mL (36). Therefore, for example, Bursera graveolens EO, rich in limonene (26.5%), β- elemene (14.1%), and (E)β- ocimene (13.0%), had IC₅₀ = 36.7 μg/mL against Leishmania amazonensis amastigotes (37), and Artemisia absinthium EO, rich in trans-sabinyl acetate, had IC₅₀ = 13.4 μg/mL against L. amazonensis amastigotes (38). Nevertheless, the leishmanicidal activity of P. vulgaris EO is comparable to the activities of many other EOs (39). According to the results, it seems that P. vulgaris EO can be a promising candidate for dis-

<table>
<thead>
<tr>
<th>Plant name</th>
<th>Collection area</th>
<th>Major components</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulicaria vulgaris</td>
<td>Hamun Lake, Zabol, Iran</td>
<td>Thymol (50.22%), p-menth-6-en-2-one (carvotanacetone, 20.2%), thymol isobutyrate (16.88%), menthan-2-one (4.31%), 1-methyl-1,2-propanedioine (4.13%), 2,5-dimethoxy-p-cymene (4.01%), myrtenol (1.22%), linalool (1.1%), β-myrcene (1.9%).</td>
<td>Sharifi-Rad et. (32)</td>
</tr>
</tbody>
</table>
covery of new natural antileishmanial drugs, especially in terms of paediatric leishmaniasis.

Today, many classes of synthetic antileishmanial drugs are showing diminishing effectiveness because of the emergence of drug-resistant strains. Hence, using effective natural antileishmanial agents with fewer side effects is an encouraging approach to combat leishmaniasis. However, these preliminary antileishmanial screening used the promastigote (insect) form of the parasite rather than the intracellular (amastigote) form. Therefore, more studies are needed to examine in vivo antileishmanial effects of *P. vulgaris* EO, identify mechanism(s) of action and investigate adverse effects.

Acknowledgments

We are also grateful to Professor Fatemeh Fallah, Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran for providing constructive criticism on the manuscript. Authors are grateful to Shahid Beheshti University of Medical Sciences, Tehran, Iran for financial support.

Conflict of Interest.

The authors declare no conflict of interest.

References

Pulicaria vulgaris essential oil for treatment of leishmaniasis.

62(9): 27-32.