Original Research

Antimicrobial and antibiofilm potential of Curcuma longa Linn. Rhizome extract against biofilm producing Staphylococcus aureus and Pseudomonas aeruginosa isolates

Newton Suwal1,2, Romit Kumar Subba1, Prem Paudyal1, Dharma Prasad Khanal1, Mamata Panthi1, Neelam Suwal1, Mohamed A. Nassan3, Mohammed Alqarni4, Gaber El-Saber Batih5, Niranjan Koirala1,2,7*

1 Department of Pharmacy, Mannmohan Institute of Health Sciences, Tribhuvan University, Kathmandu 44600, Nepal
2 Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu 44600, Nepal
3 School of Public Health and Department of Community Medicine, Chitwan Medical College, Chitwan 44600, Nepal
4 Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
5 Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
6 Laboratory of Biotechnology, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China

*Correspondence to: koirala.biochem@gmail.com

Received August 19, 2020; Accepted December 6, 2020; Published January 31, 2021

Abstract: More than 65% of all human bacterial infection are associated with biofilm. Bacteria in such biofilms are 10 to 1000-fold more resistant to antibiotics than free living bacteria cells. Organisms such as S. aureus and P. aeruginosa are responsible for a significant number of biofilm related infections. In this study, we investigated the antimicrobial and anti-biofilm activity of C. longa L. rhizome extract against biofilm producing S. aureus and P. aeruginosa isolates. The results of MIC and MBC demonstrated promising antibacterial activity of the rhizome extract. TLC and column chromatography detected various curcuminoids while phytochemical analysis also reveals presence of number of bioactive compounds such as alkaloids, flavonoids, phenolics, terpenoids, etc. Micro titer plate assay indicated significant inhibition of biofilm formation in clinical isolates treated with turmeric extract. Thus, on basis of our results turmeric extracts can be considered as natural antibiofilm and antibacterial agent.

Key words: Curcuma longa L.; Turmeric; Anti-bacterial; Anti-biofilm; S. aureus, P. aeruginosa; Phytochemicals.

Introduction

Turmeric is a spice derived from the rhizomes of Curcuma longa L., belonging to ginger family (Zingiberaceae) (1). Its rhizomes are source of a bright yellow dye and spice which are oblongonate, pyriform, and they are house hold remedy in Nepal and is popularly known as ‘Besar’ (2). As a powder called turmeric, it has been in continuous use for its flavor, color and spices in Indian subcontinent. Turmeric is extensively explained as a medicinal plant in Indian material medica (Dravyaguna Sastra) and has been well documented in Ayurveda for its therapeutic potentials and described in Kusthagna (Anti-dermatosis) and Visaghna (Anti-poisonous) (3). Ayurvedic medicine documents it as a treatment for various respiratory conditions such as asthma, bronchial hyperactivity and allergy, as well as for liver disorders, anorexia, rheumatism, diabetic wounds, runny nose, cough and sinusitis (4). Similarly, Chinese medicine also used it for abdominal pain (5). The dried rhizome of turmeric contains a large number of medicinally important phytochemicals known as the curcuminoids (6). This polyphenolic compound has shown wide variety of biological activities from antioxidant, neuroprotective, antitumor, anti-inflammatory, anti-oxidative, radioprotective to arthritis(7). Among two other curcuminoids, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC), Curcumin is the best studied active ingredient of turmeric and has been assessed in various clinical trials its therapeutic ability on inflammatory, skin, eye, central nervous system, respiratory, cardiovascular, gastrointestinal, urogenital and metabolic disorders (8, 9).

Biofilms contains group of microorganisms that are adhered at biotic and abiotic surfaces which remain in extracellular compounds released by biofilm cells (10). Process of biofilm formation follows multiple steps such as (i) adsorption of molecules (macro and micro molecules) to surfaces; (ii) bacterial adhesion to the surface and release of extracellular polymeric substances (EPS); (iii) colony formation and biofilm maturation (11). Biofilm related infection grows on natural surfaces such as teeth, heart valves (endocarditis), in the lungs of cystic fibrosis (CF) patients, chronic and secretory otitis media, intravenous catheters, and stents (12). More than 65% of all human bacterial infection are associated with biofilm and there is no available antibiotic that specially target the biofilm since bacteria in biofilm are 10 to 1000-fold more resistant to antibiotics than free living bacterial cells (13, 14). Antibiotics penetrating into these biofilm matrixes are less effective as most of the antibiotics are active only against unattached microorganisms. Ceri et al. (15) reported that biofilm-associated E. coli required greater than 500 times MIC of ampicillin.
for a 3-log reduction whereas Williams et al. (16) found that S. aureus biofilms required greater than 10 times MBC of vancomycin for a 3-log reduction. Antibiotics resistance in biofilm are supposed to be due to reasons such as slow or incomplete penetration of the antibiotics into the biofilm, an altered chemical microenvironment within the biofilm and a subpopulation of microorganisms in a biofilm (11). Novel strategies such as isolations of quorum quenching compounds, dispersal of formed biofilms, combinations of antibiotics with quorum quenching compounds are being tried as a measure to counter biofilm infections (17). However, these strategies are yet to get approved for daily use. Furthermore, the misuse of antibiotics has also contributed to development of drug resistance, which might synergize the bacteria infected disease. Therefore, novel strategies other than antibiotics should be developed to combat the bacterial and biofilm formation.

Organisms such as Staphylococcus aureus and Pseudomonas aeruginosa are usually associated with nosocomial infections and life-threatening chronic infections. Several studies have also demonstrated the involvement of P. aeruginosa and S. aureus biofilm for persistent infections (18)(19). P. aeruginosa strong pathogenicity and resistance to antibiotic therapy has largely influenced by its inherent biofilm-forming capacity(20). Lately, studies have also shown that the presence of P. aeruginosa biofilms is the contributor to wound chronicity and persistence, and appears to delay or prevent the healing of the wound (21). The persistence of chronic P. aeruginosa lung infections in CF patients are also reported due to biofilm-growing mucoid (alginate-producing) strains(22). Similarly, S. aureus and its methicillin resistant strains are also responsible for a significant number of biofilm-related infections(23).

Many plant-derived natural products possessed antibacterial as well as anti-biofilm functions in vitro. Curcuma longa L. extract expressed antibacterial activity against a range of bacteria including P. aeruginosa and S. aureus (24). The aim of this study was to investigate the antibiofilm activity of Antimicrobial and antibacterial potential of Curcuma longa Linn. rhizome extract against biofilm producing S. aureus and P. aeruginosa isolates.

Materials and Methods

Plant materials

The rhizome of C. longa L. was purchased from the local market of Sindhuli, Nepal. The collected rhizome was identified by Natural Product Research Laboratory (NPRL), Thapathali, Kathmandu (Voucher number:456). The voucher specimen of this material has been deposited in Natural Product Research Laboratory (NPRL), Thapathali, Kathmandu.

Extraction of turmeric powder

The rhizome of C. longa L. was washed thoroughly with distilled water and was cut into small pieces and shade dried for a month. After complete drying, the rhizome of turmeric was reduced to powder form with the help of electric grinder. Twenty grams of turmeric powder was packed in Soxhlet apparatus for extraction from the rhizome by the use of 250 ml of ethanol. The extracts were filtered using Whatman No. 1 filter paper, and the filtrate were concentrated with the help of rotatory evaporator under reduced pressure. The concentrated extract was stored at 4 °C, protected from light and humidity for further analysis.

Bacterial strains

The bacteria used were S. aureus and P. aeruginosa clinical isolates. These clinical isolates were collected from Manipah Memorial Medical College & Teaching Hospital, Kathmandu.

Silica gel column chromatography

Ethanolic extract was subjected to Column chromatography in silica gel glass column. About 1gm of crude turmeric extract were mixed with 1 ml methanol and loaded on to the column (34×1.5cm) and eluted with Chloroform: Methanol followed by methanol with increasing polarity. All the collected fractions were subjected to TLC (25).

Separation of curcurminoids by TLC

Using a capillary, a small spot of solution containing C. longa extract sample is applied to a plate, about 1.5 centimeters from the bottom edge. Here, slurry of silica gel acts as stationary phase and chloroform: methanol in the ratio of 19:1 acts as mobile phase. Then, mobile phase moves up to the plates by capillary action, meets the sample mixtures. Different compounds in the sample mixture travel at different rates due to the differences in their attraction to the stationary phase and because of differences in solubility in the solvent(25).

Phytochemical screening of turmeric extract

Phytochemicals screening was carried out ethanolic extracts of C. longa using standard procedure (26). Each extract was subjected to the test for glycosides, alkaloids, carbohydrate, flavonoids, saponins, phenols and tannins.

Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)

To determine minimum inhibitory concentration (MIC), broth dilution method was used (27). Two-fold serial dilution of the aqueous extract of turmeric were made with LB broth at final concentrations of 80,40, 20,10, 5, 2.5 and 1.25mg/ml. Standardized bacterial culture of S. aureus and P. aeruginosa was inoculated (0.1ml) into the dilutions and incubation was done at 37 °C for 24 hours. The lowest concentrations which showed no turbidity was recorded as the MIC of the extracts.

Minimum bactericidal concentration (MBC) was also monitored to find out whether the bacterial strains were actually killed or their growth was merely inhibited. For this, the content of the tubes showing MIC and tubes with concentrations greater than MIC were actually killed or their growth was merely inhibited. The tubes showing no growth on the plate was recorded as MBC.

In vitro biofilm formation assay

This quantitative test described by Christensen et al.
is considered the gold-standard method for biofilm detection (28). Organisms isolated from fresh agar plates were inoculated in 5 mL of LB broth with 1% glucose. Broths were incubated at 37°C for 24 h. The cultures were then diluted 1:100 with fresh medium. Individual wells of sterile 96 well flat bottom polystyrene microtiter were filled with 200 μL of the diluted cultures. The control organisms were also incubated, diluted and microtiter plate. Negative control wells contained inoculated sterile broth. The plates were incubated at 37°C for 24 hrs. After incubation, contents of each well were removed by gentle tapping. The wells were washed with 0.2 mL of phosphate buffer saline (pH 7.2) four times. This removed free floating bacteria. Biofilm formed by bacteria adherent to the wells were stained by crystal violet (0.1%). Excess stain was removed by using deionized water and plates were kept for drying. While cell-bound dye was eluted with 200μl of 33% glacial acetic acid and the absorbance of eluted solution was measured at 578 nm using a micro titer plate reader. The experiment was performed in triplicate and repeated three times. The interpretation of biofilm production was done according to the criteria of Stepanovic et al (26).

Effect of turmeric extract on biofilm formation

The effect of *C. longa* extract on the biofilm formation of bacterial pathogens was determined by quantifying the biofilm biomass through Microtiter Plate assay (27). Briefly, overnight cultures of test pathogens were added into 1 ml of fresh LB medium and cultivated in the presence of *Curcuma longa* extracts at the concentration of (0.5–2 mg/ml) without agitation for 16 h at 30 °C. After incubation, the planktonic cells in Microtiter Plate were removed by rinsing the wells twice with sterile water. The surface-adhered cells in the Microtiter Plate wells were removed by rinsing the wells twice with sterile water. The surface-adhered cells in the Microtiter Plate wells were stained with 200μl of 0.2% crystal violet (CV) solution. After 10min, excess Crystal Violet solution was removed by phosphate buffer and Crystal Violet in the stained cells was solubilized with 250μl of 95% glacial acetic acid. The biofilm biomass was quantified by measuring the intensity of CV at OD 578 nm using a micro titer plate reader (29).

Statistical analysis

Each sample analysis was performed in triplicate. All results presented are means (±SEM) of at least three independent experiments. Statistical analysis was performed with GraphPad Prism 7.0 (GraphPad Software, Inc., San Diego, CA).

Table 1. Screening of phytochemical constituents of *C. longa* extract.

<table>
<thead>
<tr>
<th>Phytochemical</th>
<th>Present/Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>+</td>
</tr>
<tr>
<td>Anthraquinone</td>
<td>+</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>+</td>
</tr>
<tr>
<td>Cardiac glycosides</td>
<td>+</td>
</tr>
<tr>
<td>Terpenoid</td>
<td>+</td>
</tr>
<tr>
<td>Phenolic</td>
<td>+</td>
</tr>
<tr>
<td>Saponin</td>
<td>-</td>
</tr>
<tr>
<td>Tannins</td>
<td>-</td>
</tr>
</tbody>
</table>

Results

Phytochemical Screening

Phytochemical screening showed presence of a number of bioactive compounds such as alkaloids, anthraquinones, glycosides, flavonoids, phenolics and terpenoids while secondary metabolites such as saponins and tannins were absent in turmeric as shown in Table 1. Similarly, the extractive value of turmeric extract is found to be 12.74%.

Column chromatography and TLC

Different active constituent of turmeric powder such as curcumin, Bisdemethoxycurcumin and demethoxycurcumin were successfully detected directly from the ethanolic extract of *C. longa* by column chromatography and TLC. When a turmeric extract was separated on TLC plate each band produced molecular ion peak corresponding to curcumin, Bisdemethoxycurcumin and Demethoxycurcumin as shown in table 2. Each plate was developed to a height of about 5.8cm using mobile phase chloroform: methanol in the ratio of 19:1. Column chromatography of ethanolic extract using chloroform and methanol mobile phase show the separation of 3 constituent band.

Determination of MIC and MBC of turmeric extract

The results of minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) indicated that turmeric extract had the ability to inhibit and completely kill the bacterial strains used in this study. *C. longa* was able to inhibit the growth of *S. aureus* at the concentration of 10 mg/ml (MIC) and

Table 2. Separation of curcinoid by TLC and column chromatography.

<table>
<thead>
<tr>
<th>TLC mobile phase</th>
<th>Ratio</th>
<th>RF value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>19:1</td>
<td>0.75</td>
</tr>
<tr>
<td>Sample (chloroform: methanol)</td>
<td>19:1</td>
<td>0.724</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Curcumin</th>
<th>DMC</th>
<th>BDMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55</td>
<td>0.55</td>
<td>0.39</td>
</tr>
<tr>
<td>0.551</td>
<td>0.551</td>
<td>0.27</td>
</tr>
</tbody>
</table>

DMC=Demethoxy curcumin, BDMC= Bisdemethoxy curcumin.

Table 3. MIC and MBC values of turmeric extract against tested bacteria.

<table>
<thead>
<tr>
<th>Bacterial stain</th>
<th>MIC</th>
<th>MBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>10mg/ml</td>
<td>20mg/ml</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>40mg/ml</td>
<td>80mg/ml</td>
</tr>
</tbody>
</table>
at the concentration of 20 mg/ml, recorded as MBC, no growth was found on LB agar whereas *P. aeruginosa* exhibited no visible growth at the concentration of 40 mg/ml (MIC) and there is no growth found at the concentration of 80 mg/ml (MBC) and the values are summarized in Table 3.

Screening of biofilm producer among staphylococcus aureus and Pseudomonas aeruginosa

A total of 19 *P. aeruginosa* isolate and 20 *S. aureus* were included in the present study. All isolates were subjected to inoculate on microtiter plate. Out of 19 *P. aeruginosa* isolates, 10 were biofilm producers i.e. 52.63% whereas 9 isolates of *P. aeruginosa* were non biofilm producers i.e. 47.36%. Among biofilm producer isolate, 30% of strain showed the ability to form strong biofilm, 40% of strain showed moderate and 30% of strain showed weak biofilm formation in microtiter plate as shown in Fig. 1.

Out of 20 *S. aureus*, 11 isolates were biofilm producers i.e. 55% whereas 9 isolates were non biofilm producers i.e. 45%. Among biofilm producer isolate, 70% of strain showed the ability to formed strong biofilm, 20% of strain showed moderate and 10% of strain showed weak biofilm formation in microtiter plate. The OD Biofilm producer of *S. aureus* and *P. aeruginosa* isolates at 578nm is illustrated in Fig 2.

Evaluation of anti-biofilm activities of ethanolic turmeric extract

In biofilm formation assay, a concentration dependent decrease in biofilm formation was observed in *P. aeruginosa* and *S. aureus* isolates with the ethanolic turmeric extract. The extract showed 26.756–58.55%, and 48.862–77.72% inhibition in biofilm formation of *P. aeruginosa* and *S. aureus* respectively at the concentration of 0.5–2 mg/ml (Table 4, Fig 3).

Discussion

Various biological activities of plant extracts are believed to be due to the presence of bioactive compounds (30). These plant secondary metabolites are nutritional constituents which are present in very tiny amounts in plants and have the potential for influencing the physiological and cellular activities after consuming them. As a popular spice, Turmeric, rhizome of *C. longa*, have shown anti-microbial activities against different bacteria, viruses, fungi, and parasites(31). In this context, we investigated antimicrobial and antibiofilm activity of *C. longa* Linn. rhizome extract against biofilm producing *S. aureus* and *P. aeruginosa* isolates.

The present study indicated significant anti-bacterial activity of *C. longa* extract against two pathogenic bacterial strains. The results of MIC and MBC of *C. longa* extract demonstrated promising antibacterial activity of *C. longa* rhizome. Our observations were confirmed by a similar study of (32) who evaluated antimicrobial activity of extracts of *C. longa* rhizome against four bacterial strains. The MIC and MBC values for different strains of *C. longa* rhizome extract ranged from 4 to 16 g/L and 16 to 32 g/L respectively. A similar finding is attained in a study of anti-microbial activity of *C. longa* rhizome extract, where methanol extract of *C. longa* rhizome showed highest inhibition against *S. aureus* clinical isolates(33). One study also showed that curcumin and various other oil fractions found in tur-
meric may affect the growth of *P. aeruginosa* by down regulating the expression of virulence factors, biofilm initiation and quorum sensing(34). Turmerone, and curcurenone presented in Turmeric oil also exhibited excellent antagonistic activity against the bacterial strains such as *P. aeruginosa, B. subtilis, E. coli* and *S. aureus*(35).

Different active constituent of turmeric such as curcumin, Bisdemethoxycurcumin and demethoxycurcumin were successfully detected from the ethanolic extract of *C. longa* by column chromatography and TLC using reported RF values(25). The pharmacological activity of turmeric has been attributed mainly to these curcuminoids consists of curcumin (CUR) and two related compounds demethoxycurcumin (DMC) and bisde methoxycurcumin (BDMC)(36). Typical curcuminoids composition of Indian varieties was found to be in the range of CUR 52–63%, DMC 19–27% and BDMC 18–28%(37). These curcuminoids have extensive biological activity as an antioxidant, neuroprotective, antitumor, anti-inflammatory, anti-oxidative, radio protective and arthritis(38). Curcuminoids, present in *C. longa*, are also being known for their hypoglycemic property. BDMC reported as an inhibitor to inactivate human pancreatic α-amylose (HPA) can be developed as anti-diabetic compound(39). Curcumin, one of curcuminoids, showed anti-biofilm against two strains of *P. aeruginosa* of two cystic fibrosis patients with MIC values of 16 μg/mL(40). A recent study assessed the effectiveness of curcumin in inhibiting and degrading polymicrobial catheters, where they concluded curcumin as a potential candidate for development of new antibiofilm drugs against polymicrobial catheters(41). A study investigating the chloroform extract of turmeric suggested that turmeric could affect multiple cellular activities in biofilm formers exhibiting antibiotic resistance by modulating adherence, EPS production, motility and surface hydrophobicity (42).

Physicochemical analysis showed presence of a number of bioactive compounds such as alkaloids, anthraquinones, glycosides, flavonoids, phenolics and terpenoids. There are reports showing such physiochemicals exerts antibacterial activities against sensitive and resistant pathogens via different mechanisms of action(43). Similarly, evidence also found phytochemicals from nature to have the potential to be developed as preventative agents or therapeutics against biofilm-based infections(44).

Bacteria within biofilms are more resistant to antibiotics and chemical agents than planktonic cells in suspension(45). *P. aeruginosa* and *S. aureus* are two of the most prevalent nosocomial and respiratory pathogens; both often expressing multiple drug resistance. Both organisms adopt a biofilm mode of growth, which contributes to high tolerance to antibiotic treatment(46). Study reports synergistic interactions of these organism as such that *P. aeruginosa* exproducts lowers the sensitivity of *S. aureus* biofilm and planktonic populations to vancomycin in CF patients. and also preserves *S. aureus* from other cell wall-active antibiotics and from various classes of protein synthesis inhibitors(47). There seems to be a clear interaction between these organism which are competitive and reciprocally beneficial to each organism in respect to their pathogenicity and colonization(48). Primarily, we assessed the antibiofilm activity of *C. longa* rhizome extracts against *S. aureus* and *P. aeruginosa* and the % inhibition ranged from 26.75-58.55±5.6.

<table>
<thead>
<tr>
<th>Concentration of curcuma longa extract</th>
<th>% Biofilm inhibition by Curcuma longa extract in P. aeruginosa</th>
<th>% Biofilm inhibition by curcuma longa extract in S. aureus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mg/ml</td>
<td>26.75±7.3</td>
<td>48.86±2.6</td>
</tr>
<tr>
<td>1 mg/ml</td>
<td>44.95±6.3</td>
<td>55.81±3.2</td>
</tr>
<tr>
<td>1.5 mg/ml</td>
<td>50.57±5.8</td>
<td>69.34±3.07</td>
</tr>
<tr>
<td>2 mg/ml</td>
<td>58.55±5.6</td>
<td>77.72±3.32</td>
</tr>
</tbody>
</table>

Table 4. Effect of ethanolic turmeric extract at different concentration on biofilm formation.

Acknowledgments

The authors gratefully acknowledge Manmohan Memorial Institute of Health Sciences, Kathmandu; Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, Nepal and to the Taif University Researchers Supporting Project number (TURSP-2020/71), Taif University.
University, Taif, Saudi Arabia.

Authors’ contribution
NS, RKS, MP and NS made significant contribution to acquisition of data, analysis, drafting of the manuscript. PP and DPK has made substantial contribution to supervising the research works, conception, design and interpretation of data. RKS and NK participated in research advice, data curation, revising, editing and the manuscript submission. Funding acquisition required was done by G.E.-S.B, M.N, M.A and N.K. Final approval of manuscript was done by all the authors. All authors read and approved the final manuscript.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
29. Pachaiavathy IASV, Agilandeswari P, Musthafa KS, Pandian SK,

48. Alves PM, Al-Badi E, Withycombe C, Jones PM, Purdy KJ, Maddocks SE. Interaction between Staphylococcus aureus and Pseudomonas aeruginosa is beneficial for colonisation and pathogenicity in a mixed biofilm. Pathogens and Disease. 2018;76.(1).

