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Introduction

Among gynecologic cancer prevalent in women, ova-
rian cancer is known as the leading cause of death among 
women and is the fifth leading cause of death in the United 
States. According to global statistics in 2012, 238,700 
new female cases of ovarian cancer were identified and 
151,900 deaths were reported due to this cancer (1). In 
2016, this number decreased and approximately 22280 
new cases were identified, of them, 14240 cases died of 
this disease (2). Unfortunately, due to the lack of sufficient 
information on the early diagnosis of this disease, 80% of 
cases are usually diagnosed at the advanced stage of the 
disease and unfortunately less than 40% of women recover 
from this disease (3).

The use of serum CA-125 is one of the most common 
methods applied for diagnosing ovarian cancer in women, 
which has shown an increase of 80 to 85%. Unfortuna-
tely, in most cases, this biomarker is not able to detect this 
disease at the early stages of the disease, and only 50% of 
these items are usually detected by this indicator. CA-125 
is a useful widely used method for the detection of ovarian 
cancer; however, it does not have the sensitivity needed 
for the early diagnosis of ovarian cancer (4).

Another cancer specific to women, which unfortuna-
tely causes a large number of deaths every year, is endo-
metrial cancer. Accordingly, this is the sixth most common 
cancer among women. In 2018, 382069 people were found 
with this disease and 8,926 people lost their lives (5). The 
most important reasons for this type of cancer are metabo-

lic syndromes and obesity, which have led to an increase in 
the number of mortality due to this disease in recent years. 
Due to the growing trend of this disease among women, 
the number of deaths is also expected to increase to 20.3% 
in 2025 (5).

Lack of sufficient knowledge on the early detection of 
this disease causes tumor recurrence, which was shown 
to be directly related to mortality. Although the incidence 
of endometrial cancer is less prevalent in underdeveloped 
countries compared to other developed countries, other 
factors cause death in these societies (6,7). For example, in 
Canada and Europe, the incidence of endometrial cancer 
is ten times higher than that of less developed countries. 
In general, this cancer is the fourth most common cancer 
among women after breast, lung, and intestinal cancers 
(5,8).

Biomarkers are used either to distinguish biological 
processes at different stages or to evaluate pathogenic 
processes and drug responses at different treatment stages 
(9). Correspondingly, these markers can provide a better 
understanding of the complexities. 

One of the applications of biomarkers is the choice 
of a systematic treatment for patients. Based on various 
investigations performed in this regard, especially high-
throughput omics platforms give us the opportunity to use 
microRNAs, RNAs and DNA as well as proteins, as bio-
markers of metabolic epigenetic changes, helping to iden-
tify their use at different stages of the disease (10).

One of the major disadvantages of this type of indicator 
is that it is expensive. Given this, researchers mostly de-
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cide to use some markers such as immunohistochemistry 
(IHC) and traditional targeted DNA sequencing, which are 
available and cost-effective (11).

One of the most important tools currently used to study 
genetic data on a large scale is gene expression microar-
ray. Accordingly, this is generally used to collect and 
study gene expression data in many diseases, especially 
human cancers. This method is used to study tumor genes, 
molecular targeting, molecular prevention, and treatment 
of cancer. By creating a database for information on the 
gene expression in various diseases, it became possible for 
researchers to provide a better study on the mechanism of 
diseases (12,13).

In the present study, we have employed a comprehen-
sive bioinformatics approach, in order to decode mutual 
genes and pathways between OC and EC for clarifying 
their potential shared mechanisms (Figure. 1)

In this investigation, the raw microarray data were ob-
tained from the National Center for Biotechnology Infor-
mation (NCBI) database. Moreover, we used some bioin-
formatics software for analyzing and identifying DEGs 
between OC and EC. Afterward, KEEG and gene onto-
logy analyses of DEGs were performed to understand the 
underlying molecular mechanisms.

Materials and Methods

Microarray data and Pre-processing and statistical 
analysis in EC and OC

A publically available dataset for Ovarian Cancer was 
downloaded from the Gene Expression Omnibus (GEO) 
repository (accessed using the number of GSE18521) 
microarray expression dataset. Notably, this dataset is 
based on the Affymetrix GPL570 platform (Human Ge-
nome U133 Plus 2.0 Array), submitted by Mok (14). For 
Endometrial Cancer, a dataset (GEO accession number 
GSE17025) was used, which is based on the Affymetrix 
GPL570 platform (Human Genome U133 Plus 2.0 Array) 
submitted by Day (15). The GSE18521 dataset contained 
91 samples, including 79 tumor samples and 12 normal 
samples. The GSE17025 dataset contained 63 samples, in-
cluding 53 tumor samples and 10 normal samples. In this 
investigation, for identifying DEGs between the tumor 
and normal samples, GEO2R (http://www.ncbi.nlm.nih.
gov/geo/geo2r/) was applied. Accordingly, GEO2R is an 
online web tool that compares the two groups of samples 
under the same experimental condition. Correspondingly, 
this can also analyze most of the GEO series (16). This 
dataset was initially filtered to include only the measure-
ments with the signal power p-value < 0.05 and absolute 
log fold‐change greater than 2.

Gene ontology and pathway enrichment analysis
The DEGs of the present investigation were analyzed to 

detect their biological functions. As well, GO and KEGG 
pathways were analyzed using the Integrated Annotation 
and Visualization Database (DAVID) (http: //davidncifcrf. 
gov/), and online tools were also considered. P <0.05 was 
considered as the statistically significant level. For obtai-
ning the best results, those interactions with the highest 
confidence scores were selected in the STRING database 
(17). The PPIs were then analyzed by Cytoscape software 
(version 3.8.2) (18), in order to analyze and visualize the 
PPI network.

Protein-protein interaction analysis
Cytoscape is software developed by an international 

consortium of open-source developers (18). Moreover, 
there are some plugins used to find the best network as 
well as some genes with a high interaction like cytoHubba 
(19).

Hub genes validation by SurvExpress
After identifying the hub genes from these microarray 

expression profile datasets of OC and EC cross-validated 
from the cancer genome atlas (TCGA) was used via Sur-
vExpress (20). We used a box plot to analyze DEG between 
high-risk and low-risk groups as well as sureExpress to 
analyze Cox regression. For considering any statistically 
significant difference, we employed Kaplan–Meier plots 
and a log-rank p-value < 0.05. Moreover, the network ana-
lyst 3.0 visualization web tool was utilized to extract and 
analyze the miRNA-target gene interaction networks (21).

Results

Identification of DEGs
In this study, for identifying DEG in OC and EC sta-

tistically analyzed using Limma, 8277 genes for OC and 
11874 genes for EC were measured. We compared the 
DEGs of both the OC and BC datasets to identify some 
genes expressed between them. We identified 154 genes 
as the common gene between the two datasets. Thereaf-
ter, we considered these 154 DEGs for further studies. The 
Venn plot of each gene expression profile data is shown in 
Figure 2.

Gene ontology and KEGG pathway analysis
DEGs data were uploaded to DAVID for identifying 

Figure 1. The workflow shows the steps necessary to identify major 
genes based on the network analysis.

Figure 2. The number of genes expressed in each dataset and 154 
common genes between OC and EC. The blue cycle represents OC 
gene expression and the red cycle shows EC gene expression.
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Hub genes validation and identification MicRNA
For validating the expressions of these key potential 

genes, the online tool, cross-validated with TCGA data-
sets was used for OC and EC. These results show that the 
selected hub genes have statistically significant differential 
expression between these two cancers, as shown in figure 
4 and Figure 5.

The validation of hub genes/proteins was performed 
for the assessment of the selected genes as a biomarker 
in cancers and enhancing treatment plans in OC and EC.  

GO pathways. The significant enriched biological pro-
cesses (BP) were as follows: ‘mitotic nuclear division’, 
'positive regulation of transcription from RNA polyme-
rase II promoter', 'positive regulation of cell proliferation, 
'cell proliferation, and ‘negative regulation of transcription 
from RNA polymerase II promoter’. Moreover, DEGs 
data were significantly enriched in MF, including ‘heparin 
binding’, ‘dipeptidyl-peptidase activity’, 'microtubule bin-
ding', ' RNA polymerase II core promoter proximal region 
sequence-specific DNA binding,  and ‘sequence-specific 
DNA binding’. Thereafter, for cellular components (CC), 
the common DEGs between OC and BC were enriched in 
‘spindle’, ' midbody', ' interstitial matrix', ' centrosome', 
and ‘extracellular space’ (Table 1).

Table 2. indicates the result of the KEGG analysis 
stating that the most significantly enriched pathways in 
the common DEGs between OC and BC were in ‘Oocyte 
meiosis’ and ‘Cell cycle’.

Identification of hub genes
Working by interacting with each other is known as one 

of the main properties of biomolecules in biological sys-
tems; therefore, based on the PPI network, the common 
DEGs between OC and BC were analyzed using the Cyto-
hubba plugin in Cytoscape software. (Figure. 3) in addi-
tion, key hub proteins, namely CDC20, BUB1, CENPF, 
KIF11, CCNB2, FOXM1, TTK, TOP2A, DEPDC1, and 
NCAPG were detected by topological analysis (Table 3).

DEGs
Category Term/gene function Gene count P-value

BP GO:0007067~mitotic nuclear division 10 8/81E-05

BP GO:0045944~positive regulation of transcription from RNA polymerase 
II promoter 20 9/22E-05

BP GO:0008284~positive regulation of cell proliferation 13 1/61E-04
BP GO:0008283~cell proliferation 11 3/62E-04

BP GO:0000122~negative regulation of transcription from RNA polymerase 
II promoter 15 8/00E-04

MF GO:0008201~heparin binding 7 0/00112641
MF GO:0008239~dipeptidyl-peptidase activity 3 0/00389733
MF GO:0008017~microtubule binding 7 0/00419430

MF GO:0000978~RNA polymerase II core promoter proximal region 
sequence-specific DNA binding 9 0/00448105

MF GO:0043565~sequence-specific DNA binding 11 0/00461022
CC GO:0005819~spindle 6 0/00187799
CC GO:0030496~midbody 6 0/00248375
CC GO:0005614~interstitial matrix 3 0/00385446
CC GO:0005813~centrosome 10 0/00387603
CC GO:0005615~extracellular space 18 0/01752343

Table 1.  Gene ontology analysis of DEGs associated with OC and BC.

Pathway ID Name Count P-value Genes
hsa04114 Oocyte meiosis 4 0/019 CDC20, CCNB2, PGR, BUB1
hsa04110 Cell cycle 4 0/026 CDC20, CCNB2, TTK, BUB1

Table 2. indicates the result of the KEGG analysis stating that the most significantly enriched pathways in the 
common DEGs between OC and BC were in ‘Oocyte meiosis’ and ‘Cell cycle’.

Figure 3. Protein network of the common genes in OC and EC. The 
ten red large nodes indicate the hub proteins.
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The prognostic evaluation revealed that the hub genes, e.g. 
CDC20, BUB1, CENPF, KIF11, CCNB2, FOXM1, TTK, 
TOP2A, DEPDC1, and NCAPG were statistically signi-
ficant in the prognosis of OC, with a log-rank p-value of 
0.00039 and hazard ratio of 1.82 (figure. 6a). These hub 
proteins showed a significance in the prognosis of EC, 
with a log-rank p-value of 0.00028 and hazard ratio of 
5.15 (Figure. 6b).

Discussion

The present investigation provided a survey of DEGs 
in both ovarian cancer (OC) and endometrial cancer (EC). 
Biomarkers were studied by analyzing microarray data, 
which are widely used today to identify complex biologi-
cal interactions in various diseases (22,23). By analyzing 

the expression data of ovarian and endometrial cancers’ 
gene expressions, 154 transcripts multiplying these two 

Gene symbol Full name Degree Betweenness
BUB1 Mitotic Checkpoint Serine/Threonine Kinase 67 10192/67

DEPDC1 DEP Domain Containing 1 48 7735/28
NCAPG Non-SMC Condensin I Complex Subunit G 20 2958/69
TOP2A DNA Topoisomerase II Alpha 17 2830/64
FOXM1 Forkhead Box M1 14 2248/31
KIF11 Kinesin Family Member 11 13 1970/64

CDC20 Cell Division Cycle 20 12 2569/14
CENPF Centromere Protein F 12 1436/31

TTK TTK Protein Kinase 7 564/33
CCNB2 Cyclin B2 5 754

Table 2.  Kyoto Encyclopedia of Genes and Genomes pathways analyses of DEGs in OC and BC.

Figure 4. Cross-validation of differential expression in TCGA EC and 
EC datasets. a) endometrial cancer and b) Ovarian cancer.

Figure 5. Heat map of key gene expression. a) endometrial cancer and 
b) Ovarian cancer.

Figure 6. Survival analysis of the hub genes. a. The significant pro-
gnostic assessment in OC and EC (long-rank p-value < 0.05).
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diseases were found to be significantly different, which are 
known as the common genes between these two diseases. 
To better understand the effects of these common genes 
between the OC and EC, the protein interactions of these 
genes were examined. After performing network and PPI 
analyses, 10 hub genes were identified, namely CDC20, 
BUB1, CENPF, KIF11, CCNB2, FOXM1, TTK, TOP2A, 
DEPDC1, and NCAPG. Moreover, some miRNAs were 
identified to have interactions with hub genes such as hsa-
mir-186-5p, hsa-mir-192-5p, hsa-mir-215-5p, and hsa-
mir-193b-3p that had the highest scores.

The results of this study are in agreement with the fin-
dings of a great deal of the previous works performed in 
this field. CDC20 is one of the genes that can play impor-
tant roles in the development and spread of cancer in the 
human body. Therefore, one of the ways to treat cancer can 
be controlling the expression of the CDC20 gene, which 
can be done by targeting several upstream genes that 
control the expression of this gene such as s p53, RASS-
F1A, EMI1, and USP44 (24). 

Recent evidences showed that four genes BUB1B, 
BUB1, TTK, and CCNB1 are significantly enriched in the 
cell cycle pathway via re-analyzing DAVID in Ovarian 
cancer (25). In addition, according to the statistical ana-
lyzes performed between the expressions of Bub1/Mad2 
genes, a significant difference was found between the ex-
pressions of these two genes and the survival of endome-
trial cancer, which can be known as a valuable factor in 
both the diagnosis and prevention of this cancer (26).

As mentioned previously in the article research by Liu 
(2019), three overlapping genes between the differentially 
expressed genes and miRNAs targets, BIRC5, CENPF, 
and HJURP, were found to be associated with significant-
ly worse overall survival of patients with EC (27). Moreo-
ver, among the upregulated genes, CENPF and UHRF1 
were found to be involved in regulating the cell cycle by 
regulating transcription factors as well as miRNAs (28). 
This gene leads to tyrosine kinase 1 degradation by ove-
rexpression in ovarian cancer cells (29).

These findings further supported the idea that KIF11 
gene expression is higher in cancerous tissues compared to 
healthy tissues, and is associated with tumor grade, stage 
TNM, and lymph node invasion (30).

The result of the analysis of the gene expression data 
(RNA-seq) showed a biological pathway for FOXM1-
SLC27A2 that may have promoted endometrial cancer. 
Additionally, the loss of the FOXM1 gene also has a direct 
effect on cancer cells. Thus, FOXM1 can affect the bio-
logical activity of cancer cells, so it can be studied as an 
important factor in regulating cancer cells for treatment 
and diagnosis (25). As mentioned in the article research by 
Barger (2015), a role was demonstrated for FOXM1 in cell 
cycle progression using primary and immortalized human 
OSE cells as well as an HGSOC cell line (31).

One of the main biomarkers that can help researchers 
in the detection of various stages of cancers is miRNAs. 
However, some of these markers could not clearly repre-
sent their independent clinical potentials; therefore, these 
biomarkers failed to enhance the accuracy of the current 
monograms. After the first discovery of miRNAs by Lee in 
1993, many studies investigated whether the dysregulation 
of miRNA expression in cancer has a correlation with both 
the risk and progression of this disease (32).

One of these miRNAs that have been extensively stu-

died in various cancers is miR-186. Accordingly, this miR-
NA is used as one of the biomarkers for the early detection 
of various cancers, because it affects various biological 
processes (33).

In our study, we identified CDC20, BUB1, CENPF, 
KIF11, CCNB2, FOXM1, TTK, TOP2A, DEPDC1, and 
NCAPG as hub genes in OC and EC. As well, the func-
tions of these major genes in this cancer are needed to be 
deeply analyzed.  

The current study provided a bioinformatics analysis of 
DEGs, which might contribute either to tumorigenesis or 
to the progression of OC and EC patients. Further studies 
are needed for having a better understanding of the role of 
these hub genes and their function in these cancers.
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