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Introduction

Osteoporosis (OP), induced as the imbalance of bone 
remodeling, is a kind of chronic bone disease with the 
typical clinical manifestation of pain, limited limb move-
ment, muscle weakness and bone fracture (1). In 2019, 
an estimated 25.5 million women and 6.5 million men 
lived with osteoporosis in the EU, Switzerland and the 
UK, and the population of males and females over 50 is 
expected to increase by 11.4% between 2019 and 2034, 
and the number of osteoporotic fractures per year in these 
countries will increase by 25% (2). The National Osteo-
porosis Foundation estimates that 10.2 million Ameri-
cans have osteoporosis and another 43.4 million will have 
low bone mass by 2021, and the population with OP or 
low bone mass will probably reach 71 million by 2030 
(3, 4). OP poses a huge threat to public health worldwide 
(5-7). Postmenopausal osteoporosis (PM-OP) refers to 

the presence of OP in postmenopausal women, which is 
related to the decline of ovarian function and subsequent 
downregulated estrogen levels (8, 9). PM-OP is characte-
rized by bone resorption over bone formation, low bone 
mass and deterioration of the skeletal microarchitecture, 
which contribute to the increased susceptibility to fragility 
fractures, thus leading to disability and mortality world-
wide (10). Bone tissue development, differentiation, bone 
mineralization and bone resorption are dynamic metabolic 
processes, which are mainly regulated by osteoblasts and 
osteoclasts (11, 12). The imbalance of bone formation and 
bone resorption triggers the progression of PM-OP, among 
which endocrine and metabolic factors play a crucial role 
with age (13, 14).

Among all metabolic-related factors, oxidative stress 
(OS) is one of the most important factors during PM-OP 
(15, 16). OS is an oxidation reaction caused by oxygen free 
radicals and peroxides (17), and reactive oxygen species 
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mRNAs) and 28 edges. Additionally, qRT-PCR confirmed the significant up-regulation of FOXO3 and DDIT3 
expressions in the PM-OP group compared to the healthy control group. In summary, this study employed 
bioinformatics analysis to identify OS-related biomarkers (DDIT3 and FOXO3) in PM-OP, providing new 
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(ROS) is the main cause of oxidative stress. Under phy-
siological conditions, ROS maintains at a very low level 
and plays a role in signal transduction, secretion of inflam-
matory factors and cell apoptosis (18, 19). Current studies 
have shown that variations of oxidative stress markers 
such as superoxide dismutase (SOD), 2,2-diphenyl-1-pi-
crylhydrazyl (DPPH) and ROS interact with osteoblasts, 
osteoclasts, fibroblasts, adipose tissue cells, and vascular 
endothelial cells to participate in the occurrence and deve-
lopment of PM-OP(20). For instance, SOD and DPPH are 
regarded as bone metabolic activity index, which could be 
used to evaluate and diagnose OP (21, 22). An increased 
SOD is symbolized a relative health condition of the bone, 
while the DPPH decline is a predictor of the dysfunction 
of bone metabolism. In the absence of estrogen protection, 
overloaded ROS breaks the balance between osteoblast 
and osteoclast, and promotes osteoblast apoptosis by indu-
cing the mitochondrial apoptosis pathway (23). Besides, 
excessive ROS can induce osteoclast differentiation by 
activating MAPK, PI3K and NF-κB pathways (24). Al-
though oxidative stress-related biomarkers are important 
for the prevention and treatment of PM-OP, few relevant 
studies have been reported.

In this light, bioinformatics analysis was performed to 
analyze differentially expressed genes (DEGs) and rela-
ted-function enrichment in PM-OP patients and healthy 
populations in this study. Our data represented that bone 
metabolism is firmly related to the formation or regulation 
of oxidants, and two typical DEGs including DDIT3 and 
FOXO3 in PM-OP were identified. This study provides a 
molecular perspective for understanding the mechanism 
and developing a personalized treatment for patients with 
PM-OP.

Materials and Methods

Data sources
The transcriptome data of PM-OP and control periphe-

ral blood samples were downloaded from the GEO data-
base (https://www.ncbi.nlm.nih.gov/geo/), including the 
GSE56815 dataset (20 controls samples and 20 PM-OP 
samples) and GSE62402 dataset (5 control samples and 5 
PM-OP samples). 1399 OSRGs were extracted from the 
GeneCards database (25).

DEGs analysis
The limma package (version 3.46.0) (26) was used to 

compare the differences in gene expression levels between 
control and PM-OP samples in the GSE56815 dataset. The 
differential gene screening conditions were as follows: 
|log2FC| > 0.5, P-value < 0.05. The volcano map and heat 
map were plotted with ggplot2 (version 3.3.6) and pheat-
map (version 1.0.12), respectively.

Weighted gene co-expression network analysis
The R software package WGCNA (version 1.71) (27) 

was used to analyze OSRGs with similar expression pat-
terns and to search for modular genes that were highly cor-
related with OP. Firstly, the samples were clustered to see 
if outliers need to be removed, and the appropriate soft 
threshold was selected based on the near-scale-free topo-
logical criteria. The OSRGs were divided into different 
modules by dynamic cutting method. Then, the correlation 
of different modules with the disease or control was calcu-

lated and the module with the highest correlation with PM-
OP was selected as the key module. The genes in the key 
modules were defined as OSRGs associated with PM-PO.

Functional enrichment analysis
DEGs and key module genes were intersected to obtain 

differentially expressed OSRGs (DE-OSRGs) in PM-OP. 
Then, ClusterProfiler (version 3.18.1) (28) was used for 
GO and KEGG functional enrichment analysis for these 
genes.

Building protein-protein interaction (PPI) network
The STRING database was used to obtain protein 

interaction information, which was used to create a PPI 
network for DE-OSRGs.

SVM-RFE and RF machine learning
DE-OSRGs were analyzed using SVM-RFE and RF 

(29) machine-learning algorithms to narrow down the 
range of signature genes. And the genes obtained by the 
PPI network, SVM-RFE and RF were intersected to obtain 
the signature genes (or biomarkers). 

Receiver operating characteristic (ROC) analysis
ROC curves were drawn by the pROC package (ver-

sion 2.3.0) (30) to evaluate the diagnostic value of biomar-
kers. The larger the area under the curve (AUC), the higher 
the accuracy.

Gene set enrichment analysis (GSEA)
Single-gene gene set enrichment analysis (GSEA) (31) 

analysis was performed to find the significant pathways of 
signature genes. The filtering criteria were |NES| > 1, P. 
adjust < 0.05 and q values < 0.25.

TF-miRNA-mRNA network construction
The transcription factors (TF)-mRNA relationship 

pairs of signature genes were extracted from the TRRUST 
database, and the Sankey map was drawn using "ggal-
luvial" (version 0.12.3) package for visualization. The 
upstream miRNAs of the signature genes were predic-
ted by Mirwalk, TargetScan and miRTarBase databases, 
respectively, and the intersection result was the predicted 
miRNA. Sankey plots were drawn for visualization. Final-
ly, TF-mRNA and miRNA-mRNA relationship pairs were 
merged and visualized using Cytoscape software (version 
3.7.1) (32).

Research object and sample collection
A total of 10 patients with clinically confirmed post-

menopausal osteoporosis were selected to collect clinical 
data, and 10 normal subjects were used as controls. The 
fasting blood of all subjects was collected in the morning. 
8 mL venous blood of each patient was taken and allowed 
to stand for 30 min, and the upper serum (non-hemolytic 
state) was collected by centrifugation at 4°C 3000 g/min 
for 10 min, and centrifuged at 13500 g/min for 4 min at 
4°C. The serum was split into Eppendorf (EP) tubes with 
200 uL per tube and placed in a -80°C refrigerator for sto-
rage. This study was approved by the Ethics Committee 
of Longhua Hospital Affiliated to the Shanghai University 
of Traditional Chinese Medicine. Signed written informed 
consent were obtained from all participants.
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ponse to reactive oxygen species, and positive regulation 
of response to endoplasmic reticulum stress (Figure 2A). 
Then, the DE-OSRGs were also involved in 25 pathways, 
such as the FOXO signaling pathway and Cellular senes-
cence (Figure 2B).

Quantitative real-time polymerase chain reaction 
(qRT-PCR)

The total RNA from serum was isolated using TRIzol 
reagent (Invitrogen, Carlsbad, CA, USA). RNA purity 
was measured on a Nucleic acid protein quantifier (DS-11, 
Denovix, USA). Then RNA was transcribed into comple-
mentary deoxyribose nucleic acid (cDNA) using the Hi-
FiScript gDNA removal cDNA synthesis kit (CW2582M, 
Cwbio, Beijing, China) followed by analysis using qRT-
PCR with the SYBR Mixture (MQ00401S, Monad, China) 
based on the expression of β-actin on a CFX ConnectTM 
Real-Time PCR System (Bio-Rad, Hercules, CA, USA) to 
collect and analyze the data. The primers applied for the 
qRT-PCR reaction are shown in Table 1.

Statistical analysis
All bioinformatics analyses were undertaken in R lan-

guage. The Wilcoxon test was employed to contrast the 
data from different groups. Statistical comparisons were 
performed using GraphPad Prism (v 8.0, La Jolla, CA, 
USA), and the comparisons between the two groups were 
performed with independent samples t-test or Mann-Whit-
ney test dependent on whether the data conforms to the 
Gaussian distribution. P-values <0.05 were considered 
statistically significant.

Results

Screening of DE-OSRGs in PM-OP
Firstly, the difference in gene expression levels between 

PM-OP and control samples was compared. A total of 323 
DEGs were obtained, among which 192 DEGs were up-
regulated and 131 DEGs were down-regulated in PM-OP 
(Figure 1A-B). Then, WGCNA analysis was performed to 
find the OSRGs associated with OP. The sample clustering 
result indicated that there were no outliers (Figure 1C). 
5 was the first value above 0.9, which could be conside-
red as the soft threshold (Figure 1D). Next, the differences 
among genes were used to cluster the obtained topological 
matrix. The adjacency and similarity coefficients between 
genes were calculated to obtain different modules (Figure 
1E). Then, the correlation between different modules and 
control or PM-OP was calculated. The MEblue had the 
highest correlation with the PM-OP (correlation value: 
0.49, P = 0.001), which contained a total of 339 genes 
(Figure 1F-G). Finally, 20 DE-OSRGs in PM-OP were 
obtained by the intersection of DEGs and MEblue module 
genes (Figure 1H).

Functional enrichment of DE-OSRGs in PM-OP
To further explore the function involved in DE-OSRGs, 

GO and KEGG functional enrichment was conducted. 103 
biological processes were mainly enriched, such as regula-
tion of autophagy, response to nutrient levels, cellular res-

Figure 1. Screening of DE-OSRGs in PM-OP. Volcano plot (A) and 
heatmap (B) of DEGs. (C) Sample clustering to detect outliers. (D) 
Soft threshold analysis. (E) Adjacency and similarity coefficients 
between genes. (F) Module-trait relationships between control and 
disease. (G) Module membership vs. gene significance. (H) The inter-
section of DEGs and MEblue module genes is shown by the Venn 
diagram.

Name Primer
FOXO3-Forward 5’-CGGACAAACGGCTCACTCT-3’
FOXO3-Reverse 5’-GGACCCGCATGAATCGACTAT-3’
DDIT3-Forward 5’ -GGAAACAGAGTGGTCATTCCC-3’
DDIT3-Reverse 5’-CTGCTTGAGCCGTTCATTCTC-3’
β-actin-Forward 5’-CATGTACGTTGCTATCCAGGC-3’
β-actin-Reverse 5’-CTCCTTAATGTCACGCACGAT-3’

Table 1. The sequences of primers.

Figure 2. Functional enrichment of DE-OSRGs in PM-OP. A. GO 
analysis of DE-OSRGs. B. Pathways involved in DE-OSRGs.
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Mining for signature genes
The STRING database was used to obtain protein inte-

raction information, and the PPI network (which contains 
11 nodes and 20 edges) was constructed for DE-OSRGs 
(Figure 3A). The PPI network was sorted by the number of 
nodes and genes with more than three nodes were selected, 
including DDIT3, MAPK8, CDK2, SIRT1 and FOXO3 
(Figure 3B). Next, 6 genes were obtained by SVM-RFE 
screening based on DE-OSRGs (Figure 3C). Meanwhile, 
11 genes were obtained by the RF algorithm (Figure 3D). 
Then, the genes obtained by PPI network analysis, SVM-
RFE and RF algorithms were intersected to obtain signa-
ture genes (DDIT3 and FOXO3) (Figure 3E). The relative 
expression profiles of signature genes in all patients were 
exhibited in Figure 3F.

Evaluation of diagnostic efficiency of signature genes
Firstly, the ROC curve of signature genes was drawn 

to evaluate the diagnostic efficiency. The AUC area of 
DDIT3 was 0.805 and that of FOXO3 was 0.867, indica-
ting that the diagnosis had a certain accuracy (Figure 4A). 
Secondly, verification was carried out in the GSE62402 
dataset (Figure 4B). The AUC area of DDIT3 was 0.84 
and that of FOXO3 was 0.72, indicating a certain diagno-
sis accuracy in the validation set.

Single-gene GSEA of DDIT3 and FOXO3
In order to understand the biological function and the 

involved signaling pathways of biomarkers, GSEA was 
performed. A total of 587 GO items (granulocyte activa-
tion, neutrophil activation and neutrophil mediated immu-
nity, etc.) and 30 KEGG pathways (Aldosterone synthe-
sis and secretion, Oxidative phosphorylation and Protein 

digestion and absorption, etc.) of DDIT3 were accessed 
(Figure 5A-B). GO enrichment of FOXO3 resulted in 12 

Figure 3. Signature genes mining. (A-B) PPI network constructed for 
DE-OSRGs. (C) SVM-RFE screening. (D) RF algorithm. (E) Inter-
sected signature genes including DDIT3 and FOXO3. (F) Relative 
expression profiles of signature genes.

Figure 5.Single-gene GSEA of DDIT3 and FOXO3. 587 GO items 
(A) and 30 KEGG pathways (B) of DDIT3. (C) GO enrichment of 
FOXO3.

Figure 4. Diagnostic efficiency of signature genes. (A) The AUC area 
of DDIT3 and FOXO3. (B) Verification in GSE62402 dataset.
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items (granulocyte activation, neutrophil degranulation 
and neutrophil mediated immunity, etc.) (Figure 5C). 
The figures showed the TOP 10 GO entries and KEGG 
pathways (Figure 5).

TF-miRNA-mRNA network construction
Firstly, 24 relationship pairs of TF-mRNA were identi-

fied according to DDIT3 and FOXO3 (Figure 6A). 3 inter-
sected miRNAs were predicted from different databases 
(Figure 6B), and the miRNA-mRNA regulatory relation-
ship diagram was established based on the 3 miRNAs 
and 2 signature genes (Figure 6C). Finally, the TF-mRNA 
and miRNA-mRNA relationship pairs were merged to 
construct the TF-miRNA-mRNA regulatory relationship 
network, containing 27 nodes (specifically 22 TF, 3 miR-
NA and 2 mRNA) and 28 edges (Figure 6D), in which 
RB1, RBCA1 and JDP2, etc. regulated DDIT3, RELA, 
ABL1 and NFKB1, etc. regulated FOXO3, hsa-miR-96-
5p regulated DDIT3 and FOXO3, hsa-miR-9-5p and hsa-
miR-29a-3p regulated FOXO3.

Biological verification of FOXO3 and DDIT3 in post-
menopausal osteoporosis patients

The biological roles of FOXO3 and DDIT3 in PM-OP 
and healthy groups were verified by qRT-PCR. Our results 
showed that FOXO3 and DDIT3 expressions were both 
significantly up-regulated in the PM-OP group compared 
with the healthy control group (all P<0.05) (Figure 7), in-
dicating a consistent alternative tendency with the results 
of bioinformatic analysis.

Discussion

OP is well-identified that several factors contribute to 
its occurrence and progression, and menopause is one of 
the leading causes of OP in the female population(33). 
Besides, the abnormal oxidative stress level has been 
considered a key regulator in the balance of osteoblasts 
and osteoclasts (34). However, few studies about oxidative 
stress-related biomarkers in PM-OP have been reported till 
now. Our study explored OS-related biomarkers such as 
DDIT3 and FOXO3 through bioinformatics analysis in 
PM-OP, offering novel molecular targets for the clinical 
treatment of PM-OP.

The imbalance of OS has been widely implicated in 
the occurrence and progression of PM-OP. A recent meta-
analysis reported by Zhao et al. (15) indicated that oxida-
tive stress index and advanced oxidation protein products 
were significantly increased in PM-OP patients, whereas 
the total antioxidant status, total antioxidant power, cata-
lase and glutathione peroxidase were decreased. Besides, 
it has been confirmed that dietary pyrroloquinoline qui-
none, a natural antioxidant, could inhibit osteoclastic bone 
resorption and enhance osteoblastic bone formation by 
suppressing oxidative stress, thus preventing ovariecto-
my-induced bone loss and improving bone strength (35). 
In line with our results, we also noticed the presence of an 
association between bone metabolism and oxidant regu-
lation, with the oxidative signaling pathways involved in 
osteoblast differentiation and apoptosis. Further, KEGG 
enrichment analysis identified six oxidative stress-rela-
ted pathways including mitochondrial biosynthesis, DNA 
damage repair, histone acetylation modification, Wnt/β-
catenin signaling pathway and cytoskeletal regulation. Si-

milarly, Yang et al. (36) glutathione/oxidized glutathione 
(GSH/GSSG) conversion involved the PI3K/Akt-Nrf2/
HO-1 signaling pathway and that the antioxidant enzyme-
mediated mitochondrial apoptosis pathway of osteoblasts 
was necessary for the development of PM-OP.

We subsequently performed PPI analysis and identi-
fied intersecting signature genes including DDIT3 and 
FOXO3. The following ROC curve and AUC area vali-
dated the relatively high diagnostic efficiency of these 
two signature genes in this study. Moreover, the qRT-PCR 
was further performed to verify the alternations of DDIT3 
and FOXO3, and the results represented that FOXO3 and 
DDIT3 were both significantly increased in the PM-OP 
group compared with the healthy control group. DDIT3 
has been reported to play a role in impeding osteoblast 
mineralization and promoting apoptosis (37). Here, 587 
GO items (granulocyte activation, neutrophil activation 
and neutrophil mediated immunity, etc.) and 30 KEGG 
pathways (Aldosterone synthesis and secretion, Oxida-
tive phosphorylation and Protein digestion and absorp-

Figure 6. TF-miRNA-mRNA network of DDIT3 and FOXO3. (A) 
24 relationship pairs of TF-mRNA based on DDIT3 and FOXO3. (B) 
3 intersected miRNAs from different databases. (C) miRNA-mRNA 
regulatory relationship diagram. (D) TF-miRNA-mRNA regulatory 
relationship network.

Figure 7. The expressions of FOXO3 and DDIT3 in Postmenopau-
sal Osteoporosis Patients The RNA expressions of FOXO3 (A) and 
DDIT3 (B) in Postmenopausal Osteoporosis Patients were detected 
by qRT-PCR. P <0.05.
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tion, etc.) of DDIT3 were screened out, suggesting that 
the DDIT3 may regulate PM-OP progression via OS and 
innate immune-relevant pathways. Another signature gene 
FOXO3 is also involved in the regulation of oxidative 
stress-induced autophagy in bone cells, including osteo-
blasts, osteocytes and osteoclasts (38). In this study, GO 
enrichment of FOXO3 represented the contribution of gra-
nulocyte activation, neutrophil degranulation and neutro-
phil-mediated immunity. Zou et al. (39) reported that OS 
could induce apoptosis in OP through FOXO3a ubiquity-
lation and degradation. Therefore, we underscored the im-
portant roles of signature genes DDIT3 and FOXO3 in the 
development of PM-OP patients, which may contribute to 
the imbalance of bone remodeling through regulating OS.

MiRNA can perform post-transcriptional regulation 
by sequentially targeted binding to mRNA. Meanwhile, 
miRNA expression is also mediated by TF, thus forming 
a complex upstream and downstream regulatory network 
of miRNA, namely TF-miRNA-mRNA (40, 41). TF-miR-
NA-mRNA could help correlate the interaction of trans-
cription factors, miRNA and target genes together, and 
visualize a network map, thus exploring potential key mo-
lecules more intuitively and conveniently (42, 43). In this 
study, the TF-miRNA-mRNA network construction results 
identified that RB1, RBCA1 and JDP2 regulated DDIT3, 
besides, RELA, ABL1 and NFKB1 regulated FOXO3. 
Moreover, hsa-miR-96-5p regulated DDIT3 and FOXO3, 
and hsa-miR-9-5p and hsa-miR-29a-3p regulated FOXO3. 
Till now, the potential role of miRNA in PM-OP remains 
elusive, we have identified the signature genes including 
DDIT3 and FOXO3, and constructed the signature genes-
related TF-miRNA-mRNA network associated with signa-
ture genes. This may largely help further investigation on 
molecular mechanisms and serve as potential biomarkers 
or therapeutic targets for PM-OP.

Altogether, our study identified two OS-related bio-
markers including DDIT3 and FOXO3 in patients with 
PM-OP by bioinformatics analysis. The prognostic value 
of DDIT3 and FOXO3 in PM-OP patients was firmly vali-
dated. Further signature genes-related pathways and TF-
miRNA-mRNA were explored to elucidate the underlying 
molecular mechanisms in PM-OP. The specific mechanism 
is not fully elucidated in the present study, therefore, fur-
ther studies about the mechanism of DDIT3 and FOXO3, 
and the larger clinical trials are worthy of performing in 
our future work.
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