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Introduction

Epstein-Barr Virus (EBV) is one of the eight known 
human herpesviruses, also known as human herpes virus 4 
(1). EBV is a common infectious agent, present in approxi-
mately 95% of the world’s population (2). EBV consists 
of a linear dsDNA genome surrounded by a capsid, an 
envelope derived from host cell membranes embedded 
in glycoproteins. The EBV genome is large, encoding 87 
proteins. To date, the functions of 72 of these proteins have 
been determined (3-5).

Primary EBV infection occurs often asymptomatically 
during childhood and causes a mild infection, usually wit-
hout symptoms (3). However, some infected individuals 
remain unexplained developing acute infectious mononu-
cleosis (AIM) or chronic active EBV infection (CAEBV), 
while others develop EBV-associated lymphoid or epi-
thelial malignancies (6). Pediatric AIM caused by Eps-
tein-Barr virus infection is characterized by fever, lym-
phadenopathy, and pharyngitis and the diagnostic criteria 
are mainly atypical lymphocytosis and the presence of 
heterophilic antibodies (5,7). Most cases of pediatric AIM 
caused by EBV infection are self-limited, but a minority of 
immunocompetent patients develop persistent or recurrent 
AIM-like symptoms, known as pediatric CAEBV. Pedia-
tric CAEBV is characterized by high EBV-DNA load in 

peripheral blood and massive expansion of T cells or natu-
ral killer (NK) cells associated with EBV infection, and 
the prognosis of pediatric CAEBV is unfavorable, with a 
5-year survival rate of only 35% (8-11). Therefore, early 
identification of pediatric AIM and pediatric CAEBV after 
EBV infection, early initiation of effective intervention, 
and early implementation of goal-oriented treatment are 
the key to reducing mortality and improving the prognosis.

There is an urgent need for improved prevention and 
therapeutic intervention strategies to reduce the healthcare 
burden associated with the development and progression 
of pediatric CAEBV, as well as methods for early diagno-
sis and appropriate treatment. This study used bioinforma-
tics to explore biomarkers and potential therapeutic targets 
associated with pediatric CAEBV development.

Materials and Methods

Data processing and identification of DEGs
The normalized transcriptome Data and clinical infor-

mation of the dataset (GSE85599) were downloaded from 
the Gene Expression Omnibus (GEO) (https://www.ncbi.
nlm.nih.gov/geo/) using the Bioconductor package ‘GEO-
query’ (12), containing 6 pediatric CAEBV, 5 pediatric 
AIM and 6 healthy samples. Furthermore, the differen-
tially expressed genes between CAEBV and AIM were 
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identified using the Bioconductor package ‘limma’ (13). 
The criterion for the inclusion of DEGs was an adjusted 
P-value less than 0.05. A volcano plot was generated by 
the R ‘ggplot2’ package to visualize the DEGs between 
CAEBV and AIM.

Weighted gene co-expression network analysis (WGC-
NA)

We constructed gene co-expression networks based 
on GSE85599 transcriptome data using the R ‘WGCNA’ 
package (14). We first calculated the Pearson correlation 
coefficient between each pair of genes to obtain a simi-
larity matrix. WGCNA used a power function to convert 
the similarity matrix into an adjacency matrix. Among all 
soft-thresholds (β) with R2 > 0.9, we chose the automatic 
value of β (β = 5) returned by the WGCNA picksoftthres-
hold function. According to the recommendations of the 
WGCNA guidelines, the network merge height is chosen 
to be 0.25. Other WGCNA parameters were used as de-
fault settings to perform further analysis. 

Functional enrichment analysis
R ‘clusterProfiler’ package (15) was used to perform 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis of DEGs. The KEGG pathways with 
adjusted p value less than 0.05 were determined to be si-
gnificantly enriched among the DEGs. 

Gene set variation analysis (GSVA) 
GSVA analysis was performed by the R 'GSVA' pac-

kage (16) to calculate related gene sets enrichment scores. 
High and low GSVA scores were used to compare the 
enrichment of relevant pathways up-or down-regulated in 
patients with CAEBV relative to AIM. All gene sets for 
GSVA were downloaded from MSigDB v7.4.

Selection of key genes
We identified candidate key genes by the intersection 

of selected WGCNA module and DEGs. Subsequently, 
two machine learning algorithms, Least Absolute Shrin-
kage Selection Operator (LASSO) and Random Forest, 
were used to identify key genes. The  LASSO penalty ana-
lysis was implemented with 10-fold cross-validation using 
R ‘glmnet’ package (17). Furthermore, we applied the R 
package ‘randomforest’ package (18) to rank the candi-
date key genes. The random forest model determines the 
optimal number of variables by calculating the average 
error rate of candidate key genes. We then calculate the 
error rate for 1 to 500 trees and use the lowest error rate to 
determine the optimal number of trees. After determining 
the above parameters, a random forest tree model is crea-
ted. Finally, trait importance evaluation is performed for 
each candidate key gene. Finally, the feature importance 
scores of each candidate key gene were determined, and 
the genes with an importance value higher than 0.6 were 
selected. The results of the two machine learning algo-
rithms are intersected to obtain the final key genes. 

Quantification of immune cell abundance
The percentage of immune cell infiltration for each pa-

tient sample was estimated using the CIBERSORT algo-
rithm (19), A method for deconvolution of the expression 
matrix of 22 human immune cell subtypes using the prin-
ciple of linear support vector regression.

Statistical analysis
Correlation coefficients were calculated using Pearson 

and Spearman correlation analysis. Normal and non-nor-
mal variables were compared using the unpaired Student 
t-test and the Mann-Whitney U test, respectively. The R 
software was used for statistical analysis and values repre-
sent the mean ± standard deviation. P<0.05 indicated that 
the difference was statistically significant.

Results

Exploring the difference between pediatric AIM and 
pediatric CAEBV

To explore the difference of pathway activities between 
pediatric AIM and CAEBV, we conducted the Gene set va-
riation analysis (GSVA) to calculate pathway scores based 
on Hallmark gene sets and KEGG gene sets. As shown as 
Figure 1A, children with acute infectious mononucleosis 
(AIM) were mainly enriched in cell proliferation-related 
pathways, such as cell cycle, G2M checkpoint and MYC 
targets, while children with chronic active EBV infection 
(CAEBV) were significantly enriched in inflammatory 
related pathway, such as chemokine signaling pathway, in-
terferon-gamma response and TNFα signaling via NFκB. 
Furthermore, enriched metabolism-related pathways also 
differed between the two groups. Children with AIM 
were significantly involved in oxidative phosphorylation, 
and the pediatric CAEBV group was mainly enriched in 
hypoxia. What’s more, to more clearly elucidate the dif-
ferences between these two groups, we investigate the 

Figure 1. Exploring the difference between pediatric AIM and pedia-
tric CAEBV. (A) Differences in pathway activities scored per samples 
by GSVA analysis between pediatric AIM and pediatric CAEBV. (B) 
Volcano plot of fold changes of genes in pediatric CAEBV in compa-
rison with pediatric AIM.
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(Figure 2B). Then we used KEGG enrichment analysis to 
perform functional annotation for these 174 intersected 
genes. The result showed that these potential key genes 
were enriched in virus infection-related pathways, such 
as Kaposi sarcoma-associated herpesvirus infection, EBV 
infection, and inflammatory response-related pathways, 
such as cytokine-cytokine receptor interaction and TNF 
signaling pathway (Figure 2C). This showed that the can-
didate key genes can reflect the characteristic of pediatric 
CAEBV.

Selection of key genes in pediatric CAEBV using two 
machine learning Algorithms

Ten cross-validation LASSO regression algorithms and 
random forest algorithms were used to screen out the key 
genes in pediatric CAEBV. A total of 10 genes were retai-
ned by the LASSO regression algorithm (Figure 3A-B), 
and 83 genes were retained by the random forest algorithm 
(Figure 3C-D). Three key genes were finally determined 
via the interaction of these two algorithms, containing 
TSPT1, TNFSF8 and RAB3GAP1. Furthermore, we ex-
plored these three key genes for diagnostic accuracy in 
distinguishing children pediatric CAEBV from children 
AIM. The area under curve (AUC) of the receiver ope-
rating characteristic curve (ROC) of these key genes was 
1.00 of TNFSF8, 0.967 of TSPT1 and 0.967 of RAB-
3GAP1, respectively (Figure S2). The above results indi-
cated that these three key genes had significant diagnostic 
efficiency in predicting pediatric CAEBV.

Immune cell abundance analysis
Immunological characterization was explored accor-

ding to immune cell abundance. Compared with pediatric 
AIM, children with CAEBV have a higher abundance of 
CD4 naive T cells, T regulatory cells (Tregs), monocytes, 
neutrophils and a lower abundance of CD8 T cells, CD4 
memory-activated T cells, NK resting cells (Figure 4A). 
All three key genes were positively correlated with the 
infiltration of monocyte, and neutrophils while negatively 
correlated with the infiltration of NK resting cells, CD8 T 

DEGs of the two groups. The volcano map shows that 
there are 1561 up-regulated genes in the pediatric CAEBV 
group (Figure 1B), and the 5 most up-regulated genes are 
all inflammation-related genes, such as prostaglandin-
endoperoxide synthase 2 (PTGS2), interleukin 8 (IL8), 
TNF alpha-induced protein 6 (TNFAIP6), proteoglycan 3 
(SLED1) and free fatty acid receptor 2 (FFAR2). These re-
sults were consistent with findings that pediatric CAEBV 
was characteristic with persistent inflammatory response.

Identification of candidate key genes in pediatric 
CAEBV

Gene expression data from all samples in GSE85599 
were input to the Bioconductor package "WGCNA" to 
build a gene co-expression network and cluster genes into 
16 gene modules (Figure S1A-C). Among these gene mo-
dules, the genes in the blue module were most positively 
correlated with pediatric CAEBV and most negatively cor-
related with pediatric AIM (Figure 2A). Therefore, genes 
in the blue module are considered to be involved in the 
development of CAEBV in children. In addition, we took 
the intersection of the genes in the blue module and DEGs 
between AIM and CAEBV. 174 common genes were 
identified as the candidate key genes in pediatric CAEBV 

Figure 2. Identification of candidate key genes in pediatric CAEBV. 
(A) Correlation of modules with clinical information. Red color indi-
cates positive correlation; blue color represents negative correlation. 
(B) Venn diagram showing intersection of DEGs and genes in the 
blue module. (C) The bubble plot showing the top 20 enriched KEGG 
pathways of 174 intersected genes.

Figure 3. Selection of key genes in pediatric CAEBV using two 
machine learning Algorithms. (A-B) The 10 cross-validation LASSO 
regression algorithm was applied to screen diagnostic biomarkers of 
pediatric CAEBV. (C-D) The random forest algorithm was applied to 
screen diagnostic biomarkers of pediatric CAEBV. (E) Venn diagram 
showing the intersection of 10 cross-validation LASSO regression 
algorithm and random forest algorithm.
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cells and follicular helper T cells (Figure 4B).

Correlation between expression key genes and per-
sistent EBV infection related pathway

To further explore the correlation between three key 
genes and CAEBV, we selected a gene set associated with 
persistent EBV infection and calculated the correlation 
of the GSVA score of this gene set with the expression 
of these three key genes. The results suggested a strong 
positive correlation between the expression of three key 
genes and the activity of persistent EBV infection-related 
pathway (Figure 5), which further confirmed the important 
role of three key genes in pediatric CAEBV.

Discussion

Children with chronic active EBV infection were cha-
racterized by chronic or recurrent infectious mononucleo-
sis symptoms and increased EBV load in the peripheral 
blood (20,21). Compared with AIM, CAEBV causes an 
increased risk of myocarditis, renal failure, hepatitis, and 
various hematological, neurological, and respiratory di-
seases. Therefore, early diagnosis and treatment would be 
beneficial for children’s health, improving the prognosis 
of children with CAEBV (9, 22-24). 

Previous studies have revealed that CAEBV in child-
ren can result in persistent activation of inflammation 
response and abnormally high level of pro-inflammatory 
chemokines produced by EBV-infected cells (8). The che-
mokine signaling pathway plays an important role in the 
regulation of immune cell migration and activation during 
EBV infection, and it has been proposed as a potential the-
rapeutic strategy for treating chronic EBV infections in 
children (5). Consistent with reported studies, our study 
also showed that compared with AIM, CAEBV is signi-
ficantly associated with the activation of the chemokine 
signaling pathway, cytokine receptor interaction signaling 
pathway and inflammatory response hallmark. Moreover, 
the tumor necrosis factor-α (TNFα) signaling pathway is 
also activated in CAEBV in children. Dysregulation of 
TNFα pathway activation leads to increased activation of 
immune cells and increased expression of genes associated 
with inflammation and cellular proliferation, and contri-
butes to the development of chronic inflammation (25). 
It has been shown that treatments aimed at suppressing 
TNFα signaling have shown promising results in reducing 
inflammation and improving clinical outcomes in chronic 
EBV infection in children (25,26). In our analysis, it also 
showed a strong association between CAEBV and TNFα 
pathway activation. We further identified DEGs between 
children with AIM and CAEBV and assessed the key mo-
dule based on WGCNA. In our study, the intersected genes 
between DEGs and genes in the key module are also stron-
gly enriched in the cytokine-cytokine receptor interaction 
signaling pathway and TNF signaling pathway. This sug-
gests that inflammation-associated signaling pathways 
play an important role in the development of CAEBV in 
children and that targeted inhibition of chemokine signa-
ling and TNFα signaling could improve the outcome of 
CAEBV in children.

It's worth noting that infiltration of immune cells in 
CAEBV in children can be complex and individualized, 
which affects the spread of the EBV virus. It has been 
revealed that increased CD8+ T cells may be associated 
with an effective immune response, while a decrease in 
CD4+ T cells may indicate a less effective response and 
a higher risk of autoimmune reactions (27,28). Our study, 
also showed that compared with AIM, patients in CAEBV 
have decreased levels of CD8+ T cells and memory-ac-
tivated CD4+ T cells, and increased naive CD4+ T cells. 
In addition, monocytes may play an important role in the 
cellular immune response to CAEBV through hyperactive 
phagocytosis and monocyte-mediated antibody-dependent 
cellular cytotoxicity. In our present study, increased levels 
of monocyte cells were observed in CAEBV when com-
pared with AIM. Interestingly, we also found NK resting 
cells were decreased in CAEBV compared with AIM. 
However, the exact role of resting NK cells in chronic 

Figure 4. Immune cell abundance analysis. (A) The immune cell 
abundance between the pediatric AIM and CAEBV patients. (B) The 
association between key genes and different immune cell abundance. 
‘*’ means P < 0.05, ‘**’ means P < 0.01, and ‘***’ means P < 0.001.

Figure 5. Correlation between expression key genes and persistent 
EBV infection-related pathway.
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EBV infections in children is not yet fully understood, and 
further research is needed to determine the precise mecha-
nisms underlying the role of NK resting cells in CAEBV 
in children. In our study, we performed the machine lear-
ning analysis by applying the intersection genes between 
DEGs in AIM and CAEBV and the key module and further 
identified the signature genes associated with CAEBV, 
including Tyrosine sulfurylation (TPST1), TNFSF8 and 
RAB3GAP1. Our result showed that all these three genes 
are positively associated with monocytes and neutrophil 
cells in CAEBV and negatively correlated with NK resting 
cells, CD8+ T cells and follicular helper T cells. It’s repor-
ted that TPST1 plays important roles in leukocyte adhe-
sion, cell signaling via G-protein-coupled receptors and 
chemokine binding to chemokine receptors. Sulfurization 
of several N-terminal tyrosine residues of the chemokine 
receptor CCR5 is crucial in mediating human immunode-
ficiency virus entry into cells (29). And TNFSF8, known 
as CD30 ligand (CD30L), is a membrane-associated gly-
coprotein belonging to the TNF superfamily. Previous 
studies have shown that CD30/CD30L signaling system 
has been implicated in the pathogenesis of several autoim-
mune and inflammatory conditions including rheumatoid 
arthritis and ulcerative colitis patients (30-32). Howe-
ver, there are very few studies exploring these genes in 
CAEBV in children. In our study, we first validate that the 
expressions of all three genes are significantly associated 
with persistent EBV infection-related pathways. And we 
also found that these three key genes showed promising 
diagnostic accuracy in distinguishing children pediatric 
CAEBV from children AIM. All the results suggest that 
these genes may be potential molecular biomarkers for the 
pathogenesis of EBV infection and stimulate understan-
ding for the development of new therapeutic strategies for 
CAEBV in children.

In summary, the present study screened out three key 
genes, namely TPST1, TNFSF8, and RAB3GAP1, which 
showed prominent value in early diagnosis of pediatric 
CAEBV. Besides, we also explored the immune cell infil-
tration in children with CAEBV and their correlation with 
key genes, which provided a valuable target for CAEBV 
in children. 
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