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Introduction

Hepatocellular carcinoma (HCC), the predominant 
form of liver cancer, is a major global health problem. HCC 
has several known etiologic factors: hepatitis B, hepatitis 
C, alcohol use, nonalcoholic fatty liver disease (NAFLD)/
non-alcoholic steatohepatitis (NASH), and obesity (1,2). 
Although the incidence of NAFLD-related HCC is lower 
than that of HCC of other aetiologies such as hepatitis C, 
more people have NAFLD than other liver diseases. The 
global incidence rate of NAFLD is increasing rapidly, so 
it has a huge impact on the incidence rate of HCC. In NA-
FLD, The incidence of HCC in patients with nonalcoholic 
steatohepatitis (NASH) is relatively high, especially in pa-
tients with metabolic syndrome (3). However, the research 
on the mechanism of NASH to promote the development 
of HCC is not deep enough.

Several studies showed that whether NASH is associa-
ted with cirrhosis nor NASH without cirrhosis, the risk of 
HCC was increased (4,5). NASH can progress to fibro-
sis and eventually lead to cirrhosis and its complications, 
including HCC. The main risk factors of liver cancer are 
caused by liver cirrhosis (6). However, there was evidence 
that a considerable number of NAFLD or NASH patients 
progress to HCC without cirrhosis (7). It is well known that 
NAFLD is strongly associated with metabolic syndrome, 

which includes obesity, dyslipidemia, and hypertension, 
and increases the risk of developing type 2 diabetes Mel-
litus (T2DM) (8). One hypothesis to explain the develop-
ment of HCC in NAFLD patients without cirrhosis is that 
hepatocellular adenoma may lead to malignant transfor-
mation in the presence of metabolic syndrome (9). The re-
views showed that patients with metabolic syndrome have 
an 81% increased risk of HCC. This may be related to spe-
cific molecular pathways of liver tumorigenesis, such as 
oxidative stress and reactive oxygen species production, 
hepatokines and adipokines imbalance (10-12).

A significant problem is the early recognition of NA-
FLD patients who will develop HCC, where new biomar-
kers are potential solutions to tackle this issue. In recent 
decades, the introduction of high-throughput technolo-
gies and bioinformatics analysis enabled identifying the 
pathogenic genes in carcinogenesis and screening poten-
tial biomarkers of cancer (13,14). In this research, we 
analyzed two public datasets to identify differentially ex-
pressed genes (DEGs) among healthy controls and meta-
bolic syndrome/NASH-derived HCC. Then the candidate 
genes were performed comprehensive bioinformatic ana-
lysis, including expression analysis, the correlation with 
clinicopathological features, survival analysis and promo-
ter methylation level, et al. We hope to screen potential 
genes for metabolic syndrome-related HCC or NASH-re-
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lated HCC and provide useful insights into the pathogene-
sis of HCC.

Materials and Methods

Gene expression profile data collection
The Gene Expression Omnibus (GEO) database col-

lects and shares publicly a range of different high-through-
put sequencing and microarray-based data sets. In our 
research, we searched the data sets, which consisted of 
patients with HCC and healthy controls. Microarray data 
of GSE102079, which was contributed by Chiyonobu N et 
al, was based on GPL570 (HG-U133_Plus_2) Affymetrix 
Human Genome U133 Plus 2.0 Array. Microarray data of 
GSE164760, which was contributed by Pinyol R et al, was 
based on GPL13667 (HG-U219) Affymetrix Human 
Genome U219 Array. Only 152 metabolism-associated 
HCCs and 14 normal livers in GSE102079, and 53 NASH-
associated HCCs and 6 normal livers in GSE164760 were 
selected for subsequent analyses.

Identification of DEGs
GEO2R, an R-based tool in the web of GEO, enables 

users in screening DEGs from two groups of samples. We 
then screened DEGs between HCC and normal samples by 
applying GEO2R. The threshold for the DEGs was set as 
adjusted P-value <0.05 and |log2 fold change (FC) | ≥ 1. 
Then, the raw data in TXT format were checked in Evenn 
(http://www.ehbio.com/test/venn/#/) (15) to identify over-
lapping upregulated DEGs and downregulated DEGs in 
the two datasets.

Enrichment analysis of DEGs
In order to analyze the biological functions and pa-

thways involved in common genes, Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were performed using Metascape 
(https://metascape.org/), which is a web-based portal desi-
gned to provide a comprehensive gene list annotation and 
analysis resource for experimental biologists (16).

PPI network and module analysis
Protein-protein interaction (PPI) networks can be eva-

luated by a publicly available online tool, STRING (http://
string-db.org/). PPIs of DEGs in STRING were selected 
with a score (median confidence) >0.4. The STRING app 
in Cytoscape3.9.1 was applied to examine the potential 
correlation between these DEGs. Then the hub genes were 
screened by MCODE. The criteria for the MCODE analy-
sis were as follows: MCODE score >5, degree cutoff = 2, 
node score cutoff = 0.2, k-score = 2, and max depth = 100.

Expression and survival analysis of core genes
The expression and survival data of hub genes were 

analyzed by GEPIA2, which is a web-based tool that pro-
vides fast and customizable functionality based on data 
from The Cancer Genome Atlas (TCGA) and the Genoty-
peTissue Expression (GTEx) (17). GEPIA2 has key inte-
ractive and customizable analytical functions, including 
differential expression, gene mapping, correlation, patient 
survival analysis, similar gene detection, and dimension 
reduction analyses. Protein expression was analyzed by 
the Hub Genes in the Human Protein Atlas (HPA). HPA 
(https://www.proteinatlas.org/) website was used to com-

pare the protein expression of the hub genes between 
normal endometrial tissue and endometrial cancer tissue 
with the application of the immunohistochemical (IHC) 
method. The association of mRNA expression of hub genes 
with clinicopathological parameters of LIHC patients was 
analyzed by UALCAN (http://ualcan.path.uab.edu/).

DNA methylation analysis
Correlation analysis between methylation levels and 

mRNA expression levels, and survival analysis for high 
and low methylation groups were evaluated through the 
GSCA database (18). Given that there are several methyla-
tion sites in one gene, the database calculated the site most 
negatively associate with mRNA expression. The UAL-
CAN database (19) was applied to compare the promo-
ter methylation levels between normal control tissues and 
HCC tissues. The level of DNA methylation was measured 
by the Beta value, which ranges from 0 (unmethylated) to 
1 (fully methylated). P-value < 0.05 was considered to be 
significant. Functional DNA methylation refers to a signi-
ficant negative correlation between methylation and gene 
expression of a particular gene. 

Analysis of gene mutation 
The cBioportal web platform (https://www.cbioportal.

org/) was designed for comprehensive genomic analysis 
and TIMER2.0 (http://timer.comp-genomics.org/) was 
used to create a bar plot showing the common gene muta-
tion rate for LIHC.

Results

Identification of DEG in HCC
There were 205 HCC tissues and 20 normal liver tis-

sues in our present study. Via GEO2R online tools, we 
extracted 2291 and 644 DEGs from GSE102079 and 
GSE1064760 respectively. Then, we used Evenn online 
tool (15) to identify the common DEGs in the two datasets. 
Results showed that a total of 158 common DEGs were 
detected, including 102 down-regulated genes (logFC< 0) 
and 56 up-regulated genes (logFC> 0) (Figure 1).

Gene function and pathway enrichment analysis of 
DEGs

To investigate the biological function of 158 overlap-
ping genes, GO/KEGG analyses were performed by the 
Metascape database. GO analysis results showed that the 
up-regulated genes were mainly enriched in BP (biological 
processes) such as ossification, blood vessel development, 
vasculature development blood vessel morphogenesis, 
cell-cell adhesion; CC (cell component) such as base-
ment membrane, vacuolar lumen, endoplasmic reticulum 
lumen; and MF (molecular function) such as integrin bin-
ding, extracellular matrix structural constituent, protease 
binding. KEGG results showed that the up-regulated 
genes were enriched in ECM-receptor interaction, Small 
cell lung cancer, AGE-RAGE signaling pathway in dia-
betic complications, Focal adhesion and other signaling 
pathways (Supplementary Figure 1A). 

For down-regulated genes, they were mainly enriched 
in BP of alpha-amino acid metabolic process, carboxylic 
acid catabolic process, organic acid catabolic process, and 
cellular amino acid metabolic process. The enriched CC 
included a peroxisomal matrix, microbody lumen, blood 
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genes
To validate different expressions of the above 4 genes 

between tumor and non-tumor tissue, 369 HCC tissues and 
160 normal tissues were compared. The mRNA expression 
levels of CDKN2A and SPP1 were significantly increased 
in HCC tissues, while the levels of CYP2C9 and CYP4A11 
were significantly decreased (Figure 3A). Additionally, we 
explored the protein expression of the hub genes on the 
HPA website and representative images were presented in 
Figure 3B. By the method of IHC, CDKN2A was medium 
staining in HCC tissues while not detected in normal tis-
sues by antibody CAB018232; SPP1 was medium staining 
in HCC tissues while not detected in normal tissues by 
antibody HPA027541; CYP2C9 was low staining in HCC 
tissues while high staining in normal tissues by antibody 
HPA015066. IHC images of CYP4A11 in HCC tissues 
and normal tissues were not found on the HPA website.

Association between the hub genes expression and cli-
nicopathological parameters in LIHC

The association of mRNA expression of hub genes 
(CDKN2A, SPP1, CYP2C9 and CYP4A11) with clinico-
pathological parameters of LIHC patients were analyzed 
by UALCAN, containing individual cancer stages and 
tumor grade. It was shown that the mRNA expression of 
hub genes was significantly correlated with LIHC indivi-
dual cancer stages. CYP2C9 and CYP4A11 as favorable 
factors for LIHC patients, the high mRNA expressions of 
them tended to be in stage 1 or 2, whereas the high mRNA 
expressions of unfavorable factors of CDKN2A and SPP1 
tended to be in stage 3 or 4. In addition, mRNA expres-

microparticle, and peroxisome. Furthermore, MF enrich-
ment indicated monooxygenase activity, vitamin binding, 
heme binding, and tetrapyrrole binding. KEGG results 
showed that the down-regulated genes were mainly en-
riched in Glycine, serine and threonine metabolism, Pyru-
vate metabolism, Retinol metabolism, Mineral absorption, 
Drug metabolism - cytochrome P450 (Supplementary 
Figure 1B).

PPI Network construction and hub gene selection
The PPI network of overlapping DEGs was established 

in the STRING database and visualized by Cytoscape 
software. There were 52 nodes and 101 edges in the PPI 
network. In addition, the key gene modules were identified 
from the PPI network in Cytoscape by using the MCODE 
plugin. According to their score, two significant modules 
were identified from the PPI network. There were 6 nodes 
and 14 edges in module 1 (score: 5.6), and 21 nodes and 52 
edges in module 2 (score:5.2) (Supplementary Figure 2). 
There were 27 hub genes: MT1G, MT1X, MT1E, MT1H, 
MT1M, MT1F, COL4A1, CLU, DUSP1, EGR1, CYP2C9, 
CAT, CD4, CYP4A11, ITGA6, SPP1, CYP2C8, SPARC, 
CYP2C19, CDKN2A, PPARGC1A, COL1A2, VCAN, 
CYP1A2, COL4A2, STAT1, THBS2.

Survival analysis of the hub genes
GEPIA2 was utilized to identify 27 core genes survi-

val data. It was found that 4 genes had significantly as-
sociated with HCC patients’ prognosis while 23 had no 
significance. Survival analysis certified that HCC patients 
with high CDKN2A and SPP1 expression suffered shorter 
survival, including overall survival (OS) and disease-free 
survival (DFS). However, high CYP2C9 and CYP4A11 
expression predicted a favorable prognosis (Figure 2).

Validation of mRNA and protein expression of the hub 

Figure 2. Overall survival analysis (OS) and disease-free survival 
analysis (DFS) of CDKN2A, SPP1, CYP2C9 and CYP4A11 in HCC 
patients.

Figure 1. Identification of common DEGs in two datasets. (A, B) Red 
meant up-regulated genes and blue mean down-regulated genes, in 
GSE102079 and GSE1064760 respectively. (C) 56 DEGs were up-
regulated in two datasets (logFC> 0). (D) 102 DEGs were down-regu-
lated in two datasets (logFC < 0).

Figure 3. (A) Significantly expressed 4 genes in normal liver tissues 
and LIHC tissue. Boxplot graphs via GEPIA2. The gray bars in box-
plots represent normal samples, and the red bars in boxplots represent 
tumor samples. *P < 0.05. (B) Representative immunohistochemistry 
images of genes in normal hepatocytes and tumor cells were analyzed 
using HPA.
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sion of the 4 hub genes was significantly related to histo-
logic grades. The high mRNA expressions of CDKN2A 
and SPP1 tended to be in grade 3 or 4, whereas the high 
mRNA expressions of CYP2C9 and CYP4A11 tended to 
be in grade 1 or 2 (Supplementary Figure 3).

Methylation analysis of 4 hub genes in LIHC
The GSCA tool was introduced to analyze 4 hub genes 

methylation and 4 hub genes mRNA expression. As shown 
in Figure 4A, CDKN2A expression was weakly positively 
correlated with its methylation level in LIHC, but SPP1, 
CYP2C9 and CYP4A11 had a significantly strong nega-
tive correlation between gene expression and DNA methy-
lation.

Compared with normal samples, the DNA methyla-
tion levels of CDKN2A and CYP2C9 were dramatically 
higher inmethylation-level tumor tissues, while the DNA 
methylation levels of SPP1 and CYP4A11 were drama-
tically lower in tumor tissues (Figure 4B). We noticed 
that SPP1, CYP2C9 and CYP4A11 had been identified as 
DNA methylation-driven genes, and the gene expression 
value was significantly affected by DNA methylation. In 
tumor tissue, SPP1 showed high expression levels with 
low DNA methylation, while CYP2C9 showed high DNA 
methylation with low expression levels.

Furthermore, survival analysis for DNA methylation 
levels of 4 hub genes was analyzed. As shown in Fig 5, 
higher CDKN2A methylation was significantly correla-
ted with a lower overall survival rate (P=0.012756647) 
and disease-specific survival rate (P=0.006886467), and 
higher CYP2C9 methylation was significantly correlated 
with lower disease-free interval rate (P=0.01280962) and 
progression-free survival rate (P=0.003875283). Compa-
red with the high SPP1/CYP4A11 methylation group and 
the low SPP1/CYP4A11 methylation group, the survival 
difference between the groups were no significant statisti-
cal differences.

Correlation between 4 hub genes expression level and 
TP53/CTNNB1/AXIN1 mutation in LIHC

First, We analyzed gene mutations of 4 hub genes 
in LIHC/TCGA by inputting the genes into the cBio-
Portal website and found that the genetic alterations of 
CDKN2A, SPP1, CYP2C9 and CYP4A11 among 372 
LIHC samples were 13%, 4%, 5%, 4% respectively (Sup-
plementary Figure 4). Among the 4 hub genes, CDKN2A 
was the most frequently altered gene. In particular, deep 
deletion was identified as the primary type of genetic al-
teration of CDKN2A in LIHC. Next, the Gene_Mutation 
module of Timer2.0 compares the 4 hub genes expression 
between different mutation statuses. In Timer2.0, the com-
monest gene mutations in LIHC were TP53 mutation (101 
of 365 patients), CTNNB1 mutation (95 of 365 patients), 
and AXIN1 mutation (22 of 365 patients) respectively. As 
shown in Figure 6A, the expression of CDKN2A in LIHC 
TP53-mutant tumors (n = 101) was dramatically higher 
than in LIHC TP53-wildtype tumors (n = 264), while the 
expression of CYP2C9 and CYP4A11 in LIHC TP53-mu-
tant tumors was dramatically lower than in LIHC TP53-
wildtype tumors. As shown in Figure 6B, the expression 
of SPP1 and CYP2C9 in LIHC CTNNB1-mutant tumors 
(n = 95) was dramatically higher than in LIHC CTNNB1-
wildtype tumors (n = 270). As shown in Figure 6C, the 
expression of CDKN2A and SPP1 in LIHC AXIN1-mu-

tant tumors (n = 22) was dramatically lower than in LIHC 
AXIN1-wildtype tumors (n = 343).

Figure 4. The DNA methylation analysis of 4 hub genes in LIHC. 
(A) Correlation between the mRNA expression and DNA methyla-
tion level in LIHC. (B) The promoter methylation level in LIHC. 
(***P<0.001)

Figure 5. Survival analysis between high and low methylation of 4 
hub genes in LIHC. The bubble color from blue to red represents the 
hazard ratio from low to high, the bubble size is positively correlated 
with the Cox P value significance. The black outline border indicates 
Cox P value ≤ 0.05. OS: overall survival, DSS: disease-specific survi-
val, DFI: disease-free interval, PFS: progression-free survival.



178

Bing Wang et al. / Biomarkers in NASH-induced hepatocellular carcinoma, 2023, 69(7): 174-180

Discussion

HCC is a major public health problem and a leading 
cause of death worldwide. HCC is characterized by rapid 
progression, recurrence, and metastasis; it is also associa-
ted with a high degree of malignancy and a high morta-
lity rate (20,21). Previously, hepatitis C virus (HCV) was 
thought to be the leading cause of HCC (22,23), but recent 
reports that newly diagnosed HCC patients are non-vi-
ral HCC (2). NAFLD/NASH, obesity, T2DM, excessive 
alcohol consumption, and metabolic syndrome are at an 
increased risk of developing HCC (24-26). The average 
5-year survival of HCC patients is generally poor, ran-
ging from 5 to 14%. As for NAFLD-related HCC, the 
outcomes are in general inferior to HCV-related HCC due 
to the more advanced stage at diagnosis (27). NAFLD 
is characterized by fatty denaturation and lipid accumu-
lation in hepatocytes and insulin resistance (28-30). It is 
the hepatic manifestation of metabolic syndrome and is a 
spectrum of conditions ranging from benign hepatic stea-
tosis to non-alcoholic steatohepatitis (NASH). NASH, the 
more aggressive form of NAFLD, could develop into pro-
gressive fibrosis and is directly associated with the risk of 
developing hepatocellular carcinoma (HCC). Therefore, 
an increased understanding of the underlying mechanisms 
leading to the risk of HCC induced by NASH is necessary 
to develop effective prevention and treatment approaches 
for HCC.

Herein, a series of bioinformatics analyses were per-
formed on two independent gene chip databases (from 
normal and NASH or metabolic syndrome-related liver 
cancer tissue), and 158 common DEGs were identified, 
of which 56 were up-regulated and 102 down-regulated. 
The results demonstrated that, in up-regulated DEGs, BP 
terms of GO were mainly enriched in blood vessel deve-
lopment and cell-cell adhesion, and the KEGG analysis 
results were mainly enriched in ECM-receptor interaction 
and Focal adhesion. These results indicated that highly ex-
pressed genes may be related to the proliferation, adhesion 
and metastasis of tumors. In GO and KEGG enrichment 
analyses, the down-regulated DEG were significantly en-
riched in amino acid metabolic process in BP, monooxy-
genase activity, heme binding and tetrapyrrole binding in 
MF, amino acid metabolism and drug metabolism-cyto-
chrome P450 in KEGG analysis. These results indicated 

that low-expression genes play a key role in oxidative 
stress and energy metabolism.

We observed that the high expression of CDKN2A 
and SPP1 was closely related to the decrease of OS and 
DFS in HCC patients. CDKN2A is a member of the INK4 
family, which is an important family of cyclin-dependent 
kinase inhibitors (CDKIs). CDKN2A gene can produce 
different transcripts through variable splicing, encoding 
at least three different proteins, two of which are p16 
(INK4) and p14 (ARF), respectively. The high expression 
of CDKN2A can promote the proliferation of cancer cells, 
inhibit the apoptosis of cancer cells, induce tumor inters-
titial angiogenesis, reduce the sensitivity of cancer cells to 
chemoradiotherapy, and ultimately affect the prognosis of 
HCC patients (31). 

SPP1 gene encodes a secretory phosphorylated gly-
coprotein, which is highly expressed in many tumors. It 
belongs to the small integrin-binding ligand N-type gly-
coprotein (SIBLING) family, which is highly expressed in 
lymphocytes, endothelial cells, bone cells and a variety of 
malignant tumor cells (32). Previous studies have illustra-
ted that tumor-driven hypoxia promotes the expression of 
SPP1, which in turn promotes tumor angiogenesis and im-
munosuppressive microenvironment (33-35). By modula-
ting epidermal growth factor (EGFR) activation, SPP1 can 
influence the immune escape and malignant biological ac-
tivity of tumor cells, and its overexpression enhances HCC 
development and metastasis (36,37). Guixiong Zhang et 
al. (38) found that the OS of the low-SPP1-expression 
group of HCC patients who received anti-angiogenesis 
combined with immunotherapy after resection was a trend 
longer than that of the high-SPP1-expression group. SPP1 
may be considered a general marker of cancer progression, 
would be valuable in combination with other biomarkers 
to guide patient stratification and treatment strategies, and 
would be an attractive therapeutic target due to its multiple 
roles in promoting tumor aggressiveness.

CYP2C9 and CYP4A11 were downregulated in HCC 
tissues and identified as protective genes. CYP2C9 and 
CYP4A11 are members of the CYP450 gene family, both 
of which are down-regulated in HCC tissues. CYP2C9 is 
involved in various biological processes from the synthe-
sis of lipids to drug metabolism and is a drug-metaboli-
zing enzyme gene (DME gene) that regulates cell growth, 
apoptosis, differentiation, and homeostasis and is involved 
in hepatocarcinogenesis (39). CYP2C9 participates in the 
metabolism of xenobiotics and fatty acids in the liver. 
Downregulation of CYP2C9 may be a biomarker of HCC 
(40,41). Hyuk Soo Eun et al showed that CYP4A11 ex-
pression is a favorable prognostic factor of HCC and sug-
gest potential predictive diagnostic and prognostic roles of 
CYP4A11 expression in HCC (42). Reducing cytochrome 
P450 gene expression has been linked to the aggravation 
of hepatocellular carcinoma and affects various regulated 
metabolites.

It has been confirmed that epigenetic aberrance, espe-
cially DNA methylation, plays an important role in the 
progression of carcinoma (43). In the present study, SPP1 
was hypomethylated and expressed at a higher level in 
HCC than in normal tissues, while CYP2C9 was hyper-
methylated and had low expression. Methylation levels of 
the CDKN2A and CYP2C9 were closely related to the sur-
vival rate of patients with HCC. The higher methylation 
levels were usually associated with poor survival, which 

Figure 6. Changes of gene expression in different mutation statuses 
in LIHC. (A) TP53 mutation. (B) CTNNB1 mutation. (C) AXIN1 
mutation.
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indicates the prognostic value of CDKN2A and CYP2C9 
methylation.

In addition, cBioPortal was used to summarize the 
possible genetic alterations for 4 hub genes in HCC. We 
identified deep deletion as the most frequent alteration in 
the CDKN2A gene in HCC. Approximately 8% of HCCs 
harbor CDKN2A deletions (44,45). CDKN2A inactivation 
has been correlated with poor prognosis independently of 
other traditional factors; in addition, CDKN2A alterations 
are discerned in more advanced, aggressive cancer (44).

Genetic mutation is one of the most common mecha-
nisms of carcinogenesis. HCC has especially frequent 
mutations, including TP53, TERT, CTNNB1, AXIN1, 
CCND1 and FGF19 et al. In our study, gene expression 
levels of four hub genes showed significant differences in 
HCC patients with and without mutant TP53, CTNNB1, 
and AXIN1. TP53 acts as a tumor suppressor in tumors. 
Genomic aberrations in the p53 pathway are the most 
frequent abnormalities in diverse cancers and often cor-
relate with high-grade histology (46). HCC patients with 
TP53 mutations had worse clinical stages and shorter ove-
rall survival time compared with patients with wild-type 
TP53 (47,48). The risk gene (CDKN2A) up was regula-
ted while protective genes (CYP2C9 and CYP4A11) were 
downregulated in mutated TP53. CTNNB1 and AXIN1 
are important components of the canonical Wnt signaling 
pathway, which regulates cell adhesion, growth, and dif-
ferentiation. The most important mechanism of β-catenin 
activation in HCC is the mutations in CTNNB1 and the 
mutations in AXIN1. However, despite belonging to the 
same pathway, genetic alterations in CTNNB1 and AXIN1 
are mutually exclusive, possibly because they carry oppo-
site roles in terms of pathway activation (49). CTNNB1 is 
the effector of Wnt signaling while AXIN1 is a negative 
regulator of Wnt signaling. Studies showed that the gene 
sets significantly up-regulated in CTNNB1 mutant HCCs 
were all associated with metabolic pathways (50).

In conclusion, by integrating multiple microarray gene 
expression profiles, four key genes (CDKN2A, SPP1, 
CYPC9, CYP4A11) were identified that appear to be im-
portant as potential diagnostic and therapeutic targets in 
metabolic syndrome/NASH-derived HCC. The GO and 
KEGG analyses revealed further molecular mechanisms 
underpinning the regulation of HCC induced by metabolic 
syndrome. This study had some limitations. All data were 
downloaded from online databases and analyzed by com-
puter algorithms; further studies including clinical sample 
analyses, and cell and animal experiments are required 
to validate the results. Together, these findings may lead 
to more effective prevention, detection, and treatment of 
metabolic syndrome/NASH-derived HCC.
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