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Introduction

Development of highly efficient therapeutic strategies 
tailored to patients with oral squamous cell carcinoma 
(OSCC) remains an overarching goal and pressing chal-
lenge (1-2). It is essential to mention that signal trans-
duction cascades play instrumental role in the onset and 
progression of cancer. Deregulation of cell signaling pa-
thways resulted in the loss of apoptosis, development of 
drug resistance, epithelial-to-mesenchymal transition and 
invasion of cancer cells (3-7). 

Seminal research works related to the underlying me-
chanisms of carcinogenesis have emphasized on protein-
coding genes mainly because proteins were classically 
viewed as the central dogma of molecular biology. Disco-
very of microRNAs (miRNAs) and long non-coding RNAs 
(LncRNAs) has generated wealth of evidence related to 
central role of non-coding RNAs in cellular functions and 
gene regulatory networks (8-17). Understanding the roles 
of lncRNAs and how they function in dynamic assemblies 
with other macromolecules has provided a better overview 
of regulatory role of lncRNAs during carcinogenesis and 
metastasis (18). 

Notably, high-throughput transcriptomic studies in the 
last two decades have unraveled rapidly expanding list of 
non-coding RNAs that outnumber the protein encoding 

genes within the human genome.
Circular RNAs were identified initially in RNA viruses 

and considered transcriptional background noise. Howe-
ver, with rapid advancements in molecular biology, use 
of bioinformatics approaches and high-throughput RNA 
sequencing technologies, researchers were able to struc-
turally and functionally characterize circRNAs.  Linear 
pre-mRNAs generate circRNAs through back-splicing or 
skipping of exons. Importantly, circular form of circRNAs 
protected them from degradation by exonucleases and 
made them significantly stable (19-22). Essentially, circR-
NAs hold a great potential with reference to therapeutic 
applications for OSCC, either through inhibition or resto-
ration of circRNAs that fine-tune cancer cells' regulatory 
networks (23-25).

In this review we have summarized most exciting fin-
dings related to regulation of cell signaling pathways by 
circular RNAs in various cancers. 

Regulation of Signaling Proteins by Circular RNAs

Gleaning knowledge from different facets of molecu-
lar biology has enabled researchers to systematically cha-
racterize cell signaling pathways and integrate them into 
discrete structure-function-based systems in context of 
different diseases (26-35).
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E-cadherin was found to be enhanced whereas, levels 
of N-cadherin and Vimentin were noted to be reduced in 
circZDBF2-silenced-SCC9 and SCC15 cells (36). Circ-
ZDBF2 antagonized miR-500b-5p and miR-362-5p me-
diated targeting of RNF145. CEBPB (CCAAT enhancer 
binding protein beta) has been shown to transcriptionally 
upregulate RNF145. circZDBF2 effectively promoted the 
binding of CEBPB to promoter regions of RNF145 (figure 
1). Consequently, RNF145 activated NFκB to transcrip-
tionally upregulate IL-8 in OSCC cells. There was evident 
tumor regression in mice inoculated with circZDBF2-si-
lenced-OSCC cells (36). 

SP1 transcriptionally upregulated the expression of cir-
cFAM126A in OSCC cells (37). circFAM126A blocked 
miR-186-mediated inhibition of FUS. circFAM126A inte-
racted with RNA-binding protein FUS to promote mRNA 
stability of RAB41. circFAM126A knockdown caused 
significant decrease in the tumor size, volume and liver 
metastasis (37). 

Knockdown of circ_0005320 resulted in the inhibi-
tion of phosphorylation of JAK2 and STAT3, which were 
abolished by the introduction of miR-486-3p inhibitors 
or miR-637 inhibitors in SCC25 and CAL27 cells (38). 
circ_0005320 levels were reduced, while the levels of 
miR-637 as well as miR-486-3p were noted to be increased 
in the tumor tissues of sh-circ_0005320 groups (38). 

ZNF460 (Zinc Finger Protein 460) has the ability to 
transcriptionally upregulate circMTO1. Consequently, 
circMTO1 antagonized miR-320a-mediated inhibition 
of ATRX. circMTO1 knockdown reduced migration and 
invasion of OSCC cells (39). 

Impairment of autophagy results in aggregation of 
p62. Circ-PKD2 overexpression potently enhanced au-
tophagy as evidenced by considerable increase in LC3-II 
to LC3-I ratio and simultaneous reduction in the levels of 
p62 (40).  Circ-PKD2 overexpression led to an increase 
in the accumulation of autophagic vesicles in cisplatin-
treated-SCC-15 and CAL-27 cells. The nutrient-sensing 
kinase mTOR inhibits the activation of autophagy primar-
ily through blockade of the assembly of ATG1-ATG13-
ATG17 complexes through hyper-phosphorylation of 
ATG13. Circ-PKD2 interfered with miR-646-mediated 
targeting of ATG13. Knockdown of ATG13 markedly re-
duced caspase-8 activity induced by circ-PKD2 overex-
pression. circ-PKD2 induced significant increase in the 
activity of caspase-8 and caspase-3 in cisplatin-treated 
OSCC cells but these effects were attenuated by ATG13 
silencing and miR-646 mimics. circ-PKD2 overexpression 
triggered significant increase in the chemo-sensitivity. 
Furthermore, tumor mass derived from circ-PKD2 ove-
rexpressing OSCC cells was smaller in size (40). 

Circ-PKD2 sequestered away miR-204-3p and potenti-
ated the expression of APC2 (adenomatous polyposis coli 
2). Overexpression of miR‐204‐3p stimulated the levels 
of β‐catenin, p‐AKT and p‐ERK1/2 in OSCC cells. Tu-
mor growth was noticed to be remarkably impaired in mice 
injected subcutaneously with circ‐PKD2-overexpressing 
SCC-15 cells (41).  

Malignant tumors have characteristically exceptio-
nal features to disseminate through lymphatic vessels to 
lymph nodes. Studies have shown that tumors produce dif-
ferent growth factors that directly or indirectly stimulate 

Figure 1. Sponge effects and circRNA-mediated transcriptional upregulation of cancer-associated genes. (A) CircZDBF2 antagonized miR-
500b-5p and miR-362-5p mediated targeting of RNF145. (B) CircRNA worked with CEBPB and stimulated the expression of RNF145. (C) 
RNF145 enhanced the degradation of IҝBα and activated NFҝB. Consequently, activated NFҝB moved into the nucleus and transcriptionally 
upregulated IL-8.
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increase in miR-299-3p and a simultaneous decrease in 
CDK6 levels in the tumor xenografts (43). 

hsa_circ_0060927 interacted with miR-195-5p 
and caused blockade of miR-195-5p-mediated targe-
ting of TRIM14 (Tripartite Motif Containing 14). hsa_
circ_0060927 overexpression enhanced the proliferative 
and migratory phenotype of OSCC cells (44).   

circ-CLK1 inhibited the apoptotic death of OSCC 
cells by suppression of miR-18b-5p-mediated targeting of 
YBX2 (Y-box protein 2) (45). 

Regulation of EZH2 by CircRNAs and LncRNAs

EZH2, a histone methyltransferase subunit of a Poly-
comb repressor complex has an imperative role as a master 
regulator of transcription (46-49).

EZH2 catalyzed the addition of methyl groups to his-
tone H3 at lysine 27 and promoted carcinogenesis. HO-
TAIR, a long non-coding RNA promotes invasion and 
metastasis by promoting the recruitment of EZH2 to the 
promoter region of E-cadherin in oral squamous cell car-
cinoma (50). circ_0000311 interfered with miR-876-5p-
mediated targeting of EZH2. circ_0000311 knockdown 
impeded the proliferation and epithelial-mesenchymal 
transition (EMT) of OSCC cells (51).

FUS (fused in sarcoma/translocated in liposarcoma), 
an RNA binding protein has been shown to interact with 
long non-coding RNA PART1 (Prostatic androgen-regula-
ted transcription-1) to stabilize EZH2. Importantly, tumors 
derived from PART1-silenced CAL27 cells demonstrated 

the growth of lymphatic vessels (lymphangiogenesis) and 
lymphatic metastasis. 

Circular RNAs have been reported to modulate an ar-
ray of proteins via ubiquitination-mediated degradation. 
circFNDC3B promoted proteasome-dependent degra-
dation of FUS. Mechanistically, circFNDC3B enhanced 
the interaction of MDM2 (murine double minute 2) and 
FUS (Figure 2). However, interaction between MDM2 
and FUS was found to be reduced in circFNDC3B-de-
pleted cells. MDM2 not only stabilized HIF1A but also 
promoted HIF1A-mediated transcriptional upregulation 
of VEGFA.  MDM2 overexpression led to inhibition of 
HIF1A ubiquitination in 293T cells. circFNDC3B inter-
fered with miR-181c-5p-mediated inhibition of PROX1 
(Figure 2). PROX1 is a versatile transcriptional regulator 
as it centrally drives lymphangiogenesis and growth of the 
lymphatic endothelial cells, whereas ESM1 modulates the 
lymphangiogenic processes. Knockdown of circFNDC3B 
was reported to be associated with a lower LN volume, 
whereas its overexpression increased LN micrometas-
tases. circFNDC3B proficiently enhances the metastasi-
zing abilities of OSCC by promoting angiogenesis/lym-
phangiogenesis in metastatic tumor microenvironment 
(42). Next-generation lymphatic targeting options can be 
tested in animal models to improve our understanding of 
changes in lymphatic structures and functions to promote 
pharmaceutical targeting of the lymphatics.

Regression of the malignant tumors was noted in expe-
rimental mice inoculated with circ_OSBPL10-silenced-
SCC-9 cells. circ_OSBPL10 downregulation led to an 

Figure 2. Role of circFNDC3B in progression of OSCC. (A) circFNDC3B interfered with miR-181c-5p-mediated inhibition of PROX1. (B) 
circFNDC3B promoted MDM2-mediated degradation of FUS protein. MDM2 increased the stability of HIF1A. Sequentially, HIF1A transcrip-
tionally upregulated VEGFA and promoted carcinogenesis. 



253

Rukset Attar et al. / Role of circular RNAs in the progression of OSCC, 2023, 69(8): 250-257

notable reduction in the levels of PART1 and EZH2 (52).
The growing insight into non-coding RNA-mediated 

control of EZH2 has opened new avenues for therapeutic 
targeting.

Regulation of Immunological Responses

Regulatory T cells (Tregs) are specialized T cells hav-
ing unique ability to suppress immunological responses. 
hsa_circ_0069313 interfered with miR-325-3p-mediated 
targeting of FOXP3 in OSCC cells. Exosomally trans-
ferred hsa_circ_0069313 promoted the functions of regu-
latory T cells primarily through increase in FOXP3 levels 
(53).  Functionally active Tregs efficiently suppressed the 
immunological response against cancer cells. 

PD-1 blockade triggers the expansion of CD8+ T cells 
in the tumor microenvironment. CD8+ T cells are differen-
tiated into short-lived cytolytic CD8+ T cells in response to 
inflammatory cytokines. CircKRT1 inhibited miR‐495‐3p-
mediated targeting of PD-L1 in OSCC cells. Co-culture of 
CD8+ T cells with circKRT1-silenced-CAL‐27 or HSC‐3 
cells caused significant increase in cytotoxicity of CD8+ T 
cells against OSCC cells. CircKRT1 knockdown en-
hanced cytotoxic effects and inhibited the apoptotic death 
of CD8+ T cells (54).  

Camrelizumab with docetaxel/cisplatin is currently be-
ing considered as a first-line therapy. The combinatorial 
regime has been reported to be well-tolerated and demon-
strated remarkable efficiency in PD-L1-positive patients 
with recurrent/metastatic oral squamous cell carcinoma 
(55). 

Regulation of Hippo Pathway by CircRNAs

Emerging interest in the components of Hippo pathway 
has generated a wealth of exciting scientific knowledge 
(56-59). LATS2 (Large Tumor Suppressor Kinase-2) me-
diated phosphorylation of YAP1 inhibited its nuclear accu-
mulation (60). miR-31 targets LATS2 and activates Hippo 
pathway in OSCC cells. However, circRNA_0000140 sup-
pressed miR-31-mediated targeting of LATS2 in OSCC 
cells. There was an evident accumulation of YAP1 in the 
nucleus in miR-31-overexpressing OSCC cells. LATS2 
knockdown led to suppression in the levels of E-cadherin 
along with a significant increase in the levels of N-cadherin, 
vimentin, matrix metalloproteinases (MMP-2 and MMP-
9). circ_0000140 inhibited tumor formation and metastatic 
spread of OSCC cells by blockade of miR-31-mediated 
targeting of LATS2 (61). Overall, these findings are in-
teresting and targeted inhibition of Hippo pathway will be 
valuable in the treatment of OSCC. Better comprehension 
of the connections between the Hippo pathway and its up-
stream signals will provide novel perspectives related to 
pharmacological targeting of Hippo pathway. 

Regulation of TGF/SMAD Pathway by CircRNAs
 

How TGF/SMAD signaling integrates numerous cues 
and translates them into specific downstream responses 
is an exciting dimension with major implications for our 
concepts related to the physiology and disease mecha-
nisms (62-66).

circUHRF1 interfered with miR-526b-5p-mediated 
targeting of c-Myc in SCC25 and CAL27 cancer cells.  

ESRP1 (Epithelial splicing regulatory protein 1) pro-
moted the circularization and biogenesis of circUHRF1. 
c-Myc transcriptionally upregulated TGFβ1 and ESRP1 
in OSCC cells. Multiplicity of pulmonary metastatic nod-
ules was found to be substantially reduced in experimen-
tal mice injected with CircUHRF1-silenced-SCC25 cells 
(67).  

circLDLRAD3 blocked miR-558-mediated targeting 
of SMAD4 in OSCC. Importantly, tumors derived from 
circLDLRAD3-overexpressing OSCC cells were smaller 
in size, while the tumors developed from circLDLRAD3-
knockdown group presented larger size of the tumors. Es-
sentially, the number of metastatic nodules on the surface 
of the lungs from circLDLRAD3-overexpressing group 
was noted to be significantly lower. Whereas, there was an 
increase in the number of metastatic nodules in mice in-
jected with circLDLRAD3-knockdown OSCC cells (68).  

circANKS1B potentiated the expression of TGFβ1 and 
interfered with miR-515-5pmediated targeting of TGFβ1. 
circANKS1B depletion not only increased cisplatin-sensi-
tivity of OSCC cells but also induced apoptotic death (69).  

Together, the complex mechanisms governing TGF/
SMAD offer strategies to develop therapeutics that control 
invasion and metastatic spread of cancer cells.

m6A Modifications in Circular RNAs

In 2017, a research team spearheaded by Alan C. Mul-
len firstly reported the profile of m6A modifications on cir-
cRNAs through a computational pipeline (AutoCirc) tool. 
Utilizing the data of m6A methylated RNA immunopre-
cipitation sequencing and m6A-circRNAs microarray, re-
search team demonstrated that m6A-circRNAs exhibited 
discrete modification styles in oral squamous cell carci-
noma. 

CircFOXK2 is derived principally from the Exon 3-2 
of FOXK2 genome with 343 bp length (70). Moreover, 
in the adjacently located area of circFOXK2 conjunction 
site, m6A modification site has been identified within the 
GGACT site. Knockdown of circFOXK2 reduced the mi-
gratory properties of OSCC cells, whereas, overexpres-
sion of circFOXK2 fueled the migratory potential of can-
cer cells. Overall, circFOXK2 potently enhanced the ma-
lignant phenotype of oral squamous cell carcinoma cells. 
Furthermore, CircFOXK2 worked synchronously with 
IGF2BP3 and enhanced the stability of GLUT1 mRNA. 
Overexpression of circFOXK2 effectively promoted the 
interaction between IGF2BP3 and GLUT1, while knock-
down of circFOXK2 caused severe dissociation of the 
interaction between IGF2BP3 and GLUT1. Collectively, 
these findings suggested that circFOXK2 effectively sta-
bilized GLUT1 mRNA primarily through interaction with 
IGF2BP3 in m6 A-dependent manner (70). 

Regulation of Histone Lysine Demethylases by CircR-
NAs

Deregulations of JmjC KDM (JmjC-domain-contai-
ning histone demethylase) family members have grea-
ter implications than previously anticipated. JmjC KDM 
family provides a therapeutic avenue for the treatment 
of cancers. Lysine-specific demethylases are increasin-
gly being recognized as versatile regulators of invasion 
and progression of OSCC. KDM2A (Lysine demethylase 
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2 A) is involved in the demethylation of the dimethylated 
H3K36 (H3K36me2) residue. Lysine-specific demethy-
lase 4A (KDM4A) also known as Jumonji domain-contai-
ning protein 2A (JMJD2A) has also been shown to play 
major role in the progression of OSCC. 

circFOXO3 potentiated the expression of KDM2A by 
relieving the repressive effects of miR-214 on KDM2A. 
circFOXO3 and KDM2A effectively promoted the growth 
of the OSCC cells (71). Use of miRNA-214 mimics can be 
an exciting opportunity to induce regression of the tumors 
in experimental mice.

Knockdown of circGOLPH3 inhibited malignant phe-
notype of OSCC cells. CircGOLPH3 efficiently inhibited 
miR-145-5p-mediated targeting of KDM2A. There was 
a significant regression of the palpable tumors in expe-
rimental mice inoculated with circGOLPH3-silenced-
HSC-3 cells (72). 

LEF1 not interacts with KDM4A but also guides the 
recruitment of KDM4A complexes to the chromatin. KD-
M4A suppression led to a substantial increment in the en-
richment of H3K36me3 on the promoter region of LATS2. 
There was an evident reduction in the tumor-forming ca-
pacities of LEF1-silenced or KDM4A-silenced CAL-27 
cancer cells (73). 

Regulation of PI3K/AKT/mTOR Pathway

Wealth of information has greatly advanced our current 
conceptual understanding of the mechanistic basis for the 
involvement of phosphatidylinositol-3-kinases in diseases 
and assesses the preclinical and clinical breakthroughs re-
lated to phosphatidylinositol-3-kinases inhibitors (74-80). 
The state of the art in the regulation of PI3K/AKT signa-
ling by circRNAs is discussed. 

These emerging themes of intricate regulation of si-
gnaling pathways by circular RNAs have started to draw 
widespread attention. In this section, we have presented 
an overview related to the ongoing developments about 
the regulation of circular RNAs by PI3K/AKT pathway 
in OSCC. 

circ_0058063 sponged miR-145-5p and activated the 
PI3K/AKT pathway in OSCC cells. miR-145-5p overex-
pression inhibited the phosphorylation of PI3K and AKT. 
There was an evident increase in the tumor mass in mice 
inoculated with circ_0058063-expressing-SCC-9 cells 
(81).

NUPR1 (Nuclear protein-1) played central role in the 
progression of OSCC. circHIPK3 interfered with miR-
637-mediated inhibition of NUPR1. Levels of p-PI3K and 
p-AKT were found to be reduced in miR-637 mimics-treat-
ed OSCC cells. However, circHIPK3 overexpression trig-
gered an increase in the levels of p-PI3K and p-AKT (82).  

Similarly, LTBP2 (Latent Transforming Growth 
Factor-β-Binding protein 2) worked synchronously with 
CircEPSTI1 and promoted carcinogenesis. CircEPSTI1 
sponged away miR-942-5p and potentiated the expression 
of LTBP2. PI3K/AKT/mTOR pathway was noted to be 
functionally active in circEPSTI1high/miR-942-5plow OSCC 
tissues. BEZ235 (PI3K/mTOR dual inhibitor) significant-
ly reduced the size and weight of tumors derived from 
circEPSTI1-overexpressing CAL27 and SCC9 cells (83).  
Hypoxia activated p-AKT and p-ERK½ but downregu-
lated the levels of p-mTOR. circCDR1as overexpressing-
cells demonstrated higher ROS levels in hypoxic cells. 

There was a significant increase in the volume and weight 
of the tumors in mice inoculated with CircCDR1as-over-
expressing Tca-8113 cells (84). 

Importantly, circular RNAs also serve as tumor sup-
pressors. hsa_circ_0007059 significantly inhibited the 
malignancy of OSCC cells. Essentially, hsa_circ_0007059 
inactivated AKT/mTOR signaling pathway (85). 

PI3K family is an efficient and medicinally valuable 
candidate for the development of small-molecule inhibi-
tors, portending greater-than-ever potential as bona fide 
pharmacological targets. In line with this approach, hi-
ghly selective and potent inhibitors have been developed 
for different members of PI3K family. Keeping in view 
the milestones set to design kinase-targeted antibodies as 
well as small-molecule inhibitors, combinatorial strategies 
consisting of synthetic oligonucleotides for inactivation of 
oncogenic circRNAs will be advantageous.

Concluding remarks

Importantly, discoveries of circRNA-miRNA regula-
tory axis in oral squamous cell carcinoma have been made 
through advancements in the microarray and sequencing 
platforms. Therefore, correlations between the identified 
and to-be-identified circRNAs should be further charac-
terized by large-scale studies which will be valuable to 
superimpose the regulatory networks of multiple circular 
RNAs thus enabling interdisciplinary researchers to de-
sign personalized therapeutics for OSCC patients.
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