

Cellular and Molecular Biology

E-ISSN: 1165-158X / P-ISSN: 0145-5680

www.cellmolbiol.org

Molecular study of colorectal carcinoma and *EGFR* gene mutations

Shayan Rasheed Abubakir*, Hazha Jamal Hidayat

Biology Department, College of Education, Salahaddin University-Erbil, Erbil, Iraq

ARTICLE INFO	ABSTRACT	
Original paper	The development of various human tumors can be related to the activation of the Epidermal growth factor receptor (<i>EGFR</i>) and its subsequent signaling pathways. There are so much alertness and awareness that has	
Article history:	been given to the EGFR pathway recently because EGFR and some downstream components together render	
Received: May 14, 2023	as targets for anticancer therapy. The EGFR pathway and its impact on colorectal carcinogenesis and assess-	
Accepted: June 24, 2023	ments are the assertiveness in this paper. In this study, we took 1034 patients with colorectal carcinoma that	
Published: September 30, 2023	were recorded as a medical survey we used a standard questionnaire for those patients and we used real time	
Keywords:	PCR for 30 patients from 134 cases that have colorectal carcinoma to detect if there is any mutation in the $EGFR$ gene. We chose 4 exons for that purpose which were exons (18),(19),(20) and (21) of the $EGFR$ gene.	
Colorectal cancer, EGFR gene, Real time PCR, Mutation, Paraf- fin-embedded tissue	After deparaffinization and DNA extraction from the tissues of patients with colorectal carcinoma, we used real-time PCR technique by using (Rotor gene) kit and we were run our samples with the control group of the same patients and internal control from the kit to compare if there was any mutation but there was not any mutation in those exons of our (30) samples of paraffin-embedded tissues (FFPE).	

Doi: http://dx.doi.org/10.14715/cmb/2023.69.9.27

Copyright: © 2023 by the C.M.B. Association. All rights reserved.

Introduction

Colorectal cancer (CRC) is a common and lethal disease (1). And is one of the malignant tumors that are found most frequently around the world (2,3). The main cause for the high mortality rate is that the prognosis for progressed metastatic colon cancer is most unfavorable (4). Multiple genes in different genetic pathways are involved in the development of the pathogenesis of colorectal cancer. In recent years, the colorectal cancer molecular pathogenesis study has become very important (5). Many targeted agents have been developed. In particular, agents targeted at signal transduction for cell growth have been actively studied, and antitumor agents targeted at epidermal growth factor receptor (EGFR) are representative (6) EGFR is a cell-surface receptor for which expression increases in various malignant tumors, including CRC, and which affects cell growth and proliferation, metastasis, angiogenesis, and cell death through intracellular signal transduction (7,8) Signalling pathways that emerge from EGFR activation are critical in colon cancer (CC) biology. Its targeting with specific drugs has opened a new window in the treatment of this disease (2). (EGFR) is a tyrosine kinase receptor that shows overexpression in epithelial tumors and regulates important processes in tumorigenesis (9). Blocking EGFR activation would obviously represent an innovative key strategy in patient care because this therapeutic strategy impairs crucial cellular functions linked to proliferation and survival (10) Molecular markers that predict response to a specific therapy or treatment regimen are known as predictive biomarkers (11,12) In addition to molecular alterations of the EGFR gene, activation of *EGFR* downstream effectors can lead to tumor formation/ progression. Specific alterations can impact prognosis and predict response to anti-*EGFR* therapy (13). In this research work, the *EGFR* gene expression rate in FFPE tissue of advanced colorectal cancer patients in Erbil was studied.

CM B Associatio

Materials and Methods

Among 134 individuals, we selected 30 CRC patients to investigate the prevalence of mutations in the Egfr gene. Of these patients, there were 10 women and 20 men. Using a Qiagen QIAamp, DNA was extracted from tissue samples that had been FFPE. The simple Egfr Mutation Analysis Kit for Real-Time PCR was utilized in order to carry out the mutation analysis (EntroGen). Table 1 provides a comprehensive overview of the demographic as well as clinical features of patients. Embedded tissues of colorectal cancer were used to select 30 out of 134 samples of archived formalin-fixed tissue for the purpose of RT-PCR molecular study.

DNA extraction

Genomic DNA was isolated from 10 μ m-thick paraffinembedded tissue sections. Sections were deparaffinated twice for 30 min in xylene, redehydrated in 100,80,60,40% ethanol for 10 sec., then add 200 ml Qiagen tissue lysis buffer (Qiaamp DNA extraction kit), transfer to eppendorf tubes and incubated with 40 μ l protein-kinase and incubated overnight at 37°C add 20 ml protease K incubated for 1-2 h at 55°C after a total pro-k incubation DNA isolation proceeded as in the manufacture protocol.²² DNA concen-

^{*} Corresponding author. Email: shayan.abubaker@su.edu.krd Cellular and Molecular Biology, 2023, 69(9): 177-182

tration was determined at 260 nm using the Nano-drop spectrum (thermos-fisher-USA).

EGFR mutation analysis using real-time PCR-based assay

Polymerase chain reaction PCR-based assay (Easy egfr kit) for identifying EGFR mutation, located in codons 18,19,20and 21. In a real-time or quantitative PCR, the product quantity is aforesaid during the reaction. The number of amplification cycles required to obtain a certain amount of PCR product is registered as the threshold cycle (Ct) (14–17). samples with Δ Ct between 3.0 and 5.8, to confirm the mutation, must have a value of normalized fluorescence at the last cycle > 0.4. Compare the Ct and ΔCt values of the samples with those reported in Our table kit. The specified values are in the range and include extremes. The ΔCt values should be calculated with the following formula, taking care that the Ct value in Green/ Green2 for the mutation and the equivalent for the control assay belong to the same sample: T790M, S768I, L858R, L861Q, ex19del, ex20ins mix $\Delta Ct = Ct$ Green mutation - Ct Green EGFR ctrl mix G719x mix Δ Ct = Ct Green 2 mutation – Ct Green 2 EGFR ctrl mix. The assay was validated for analytical and diagnostic use and performed according to the manufacturer's instructions on a Real-Time PCR System (Roter- gene Q Qiagen.

Ethical consideration

The Ethical Committee at the College of Education, Salahaddin University has approved the study.

Statistical analysis

The statistical package for social science (SPSS, version 26) and Statgraphics were used for data entry and analysis. Descriptive statistical analysis (including frequency, percentage, mean, standard deviation, range, and ratio) was used to describe the data; and Inferential statistical analysis was used to determine the association between variables by using Fisher's exact tests with chi-square. The P-value is considered statistically significant if it's ≤ 0.05 which rejects the null hypothesis.

Results

The mean age of the study sample was 51.97 years, with SD ± 15.962 , the range of age is(=<20 to <61) years (Figure 1).

The distribution of the sample according to sex was 64 % males and 36% females (Figure 2).

According to the data presented in Table 1, The sigmoid position exhibited the highest proportion of tumors, accounting for 38% of the total. This was followed by the proximal and mid-rectal locations, which accountined for 25% and 13%, respectively. Most (93%) tumors were adenocarcinoma- type. Concerning the size of tumors, the majority (22%) of tumors were less than 4 cm and 57% were more than 4 cm. Regarding metastasis, the table shows that 71% of tumors were positive in the metastasis. Same table show, that 69% of tumors were positive regarding the nodal state. In reference to pathological stages, table 1 shows that 57% of tumors were in grade III and 34% in grade II and according to this study 83% of them hadn't family history only 17% had a family history regarding colorectal carcinoma.

There wasn't any mutation in the *EGFR* gene of (30) CRC samples (Figure 3).

Gene expression analysis by real-time RT-PCR has been evaluated as a molecular determinant of the Mutation of the *EGFR* gene at four exons which were exons 18,19,20 and 21 in colorectal cancer. Thirty patients were included in the study. There was no association between colorectal cancer and gene expression of *EGFR*, which is in concordance with the Figure 3 presented here. The present data showed no significant correlation between *EGFR* expression in normal colon tissue compared to colon tumors. For supporting our study we presented the mutations of *EGFR* in internal control that contain within our kit. Figure 4 presents the mutations of the *EGFR* gene in internal control that shows the quality of our kit. The present study is the first evaluation of the possible relationship between *EGFR* gene expression in CRC in the Kurdistan region.

Discussion

The present investigation presentes findings on the incidence of CRC in the city of Erbil, including several factors associated with CRC cases. Specifically, our study focused on mutations happening at exons 18, 19, 20, and 21 of EGFR gene throught the period from 2020 to 2021. Furthermore, we used this data to make predictions regarding the occurence of new instances in the coming decade. Colorectal cancer was the third most common cancer among women and the fifth among men in Erbil governorate between 2013 and 2019. It represented the fifth most prevalent cancer in the Duhok governorate for both sexes. The reasons for the burden of colorectal cancer in the KRG are believed to reflect the changes in lifestyle and dietary factors, including smoking and obesity, which are associated with Westernized lifestyle factors 29. In 2018, colorectal cancer was the second most prevalent cancer among

	Gender N	%
Male Female Total	86 48 134	64% 36% 100%
	Age class	0/
≤ 20	2 10	1% 7%
21 - 50 31 - 40 41 - 50	$\frac{10}{26}$	19% 15%
51 - 60 61+	31 45	23%
Total	134	100%
	Location of Tumor N	%
Ascending Descending	2 12	1% 9%
Lower Recta Mid rectal	10 18	7% 13%
Proximal Sigmoid	34 51	25% 38%
Transverce Colon Total	7 134	5% 100.0
	Size of Tumor	0/
<4	N 77	57%
4 >4	28 29	21% 22%
lotal	134	100%
	Type of CRC	0/
Adenocarcinoma Mucinous +signet	125	93%
ring	6	4% 10/
Tubulo-villous	2	1%
adenoma Total	134	100%
	Grade	0/0
$\frac{1}{2}$	10	7% 34%
$\frac{2}{3}$	77	57%
Total	134	100%
	Metastasis	
Negative	N 39	29%
Positive Total	95 134	71% 100%
	Family History	
Negative	N 111	% 83%
Positive	23 134	17%
10001		10070
	Nodal State	07
Negative	1N 41 02	31%
Positive Total	133	69% 99%
System	1 134	1% 100%

Table 1. Age, sex, clinical and histopathological features of CRC patients.

women worldwide, and the third among men; overall, CRC ranked third in prevalence, but second worldwide in mortality (18). The highest percentages of gender that diagnosed cases of CRC that reported in this study were in Erbil (61%) and the percentage of age was %34 had age 60 and more, this shows that the range was changed during 2020_2021 when we compared with the previous study. The reasons for the burden of colorectal cancer in

Figure 3. Graph of FAM baseline corrected normalized reporter of *EGFR* ex-19delin linear scale: No mutated samples (green and blue) have a Ct>31; wild-type samples (red) have a Ct<31.

Figure 4. *EGFR* gene expression of internal control. Samples with Δ Ct between 3.0 and 5.8 confirms the mutation. Red curve: Wild type sample; blue curve: Mutated sample

the KRG are believed to reflect the changes in lifestyle and dietary factors, including smoking and obesity, which are associated with Westernized lifestyle factors (19). In 2018, CRC was the second most prevalent cancer among women worldwide, and the third among men; overall, CRC ranked third in prevalence, but second worldwide in mortality (18). Likewise, in neighboring countries such as Iran, colorectal cancer ranked as the third most frequent cancer in 2015 (15). Thus far, previous studies focused on age, location of the tumor, size of the tumor, metastasis and type of CRC, nodal status, grade and family history. One of the most important risk factors for CRC incidence is the median age (51.97years) in which %34of cases of co-

lorectal carcinomas age patients were 61 years old or more than 61 years old while only %1 their age less than 20 years old this was similar to the results of other studies that did on cancer in general In which conducted in Middle Eastern countries, such as Jordan (55 years 35 and 56 years 36) and Palestine (55 years 37). This could be at (19) attributable to the Kurdish population and other nations in the Middle East having younger populations than Western countries (14). However, the highest incidence was found in patients aged 70-79 years in some European countries, like the UK at 28.34% and Norway at 27.7% (15). The most frequent location of colon cancer was sigmoid Colon cancer in which %38 in which proximal comes after it which was %25 and only %1 of CRC patients have tumors in Ascending locations in the colon. According to the study that we did on our patients we found that %57 of CRC tumors size were <4 mm followed by %22 of them were their size of tumor >4mm and %21 of them were the tumor size =4mm. It is important to fully elucidate the biology of LN spread in CRC. Regarding with metastasis and nodal state we reached to the result that %71of patients had positive metastasis with 69% had positive nodal state while %29 had negative metastasis and %31 without nodal state. Accurate identification of lymph node (LN) involvement in patients with CRC is crucial for prognosis and treatment strategy decisions (16,20). Although several histopathologic findings, such as lymphatic invasion and tumor differentiation, are known to be predictors of LN metastasis, they are only available postoperatively. Preoperative knowledge of LN metastasis can provide valuable information for determining the need for adjuvant therapy and the adequacy of surgical resection, thus aiding in pretreatment decision-making (20,21). A family history of CRC is a known risk factor for CRC and encompasses both genetic and shared environmental risks. The prevalence of family history may be lower than the commonly cited 10% and confirms evidence for increasing levels of risk associated with increasing family history burden, The relative risk of developing CRC varied from 0.89 (for people with no family history) to nearly a 20-fold risk (for people with likely inherited syndromes), with risk levels in between, with increasing family history burden. The risk of CRC was higher when the relative was diagnosed at an earlier age. CRC risk also depended on the age of the person at risk: people with positive family history in their 30s or 40s demonstrated a higher relative risk compared to their age-matched peers than people with the same positive family history at an older age (22). There is evidence for a higher prevalence of adenomas and of multiple adenomas in people with a family history of CRC, but no evidence for differential adenoma location or adenoma progression by family history; depending on our study %83 of CRC patients had no family history related to their disease, while %17 of them had a family history of CRC so, for the foreseeable future family history may remain a valuable clinical tool for identifying individuals at increased risk of CRC.When we study the most prevalent colon cancer types we get that %93 of patients had adenocarcinoma type and %1 had Hyperchromatic and tubule villous adenoma when we compared with other studies we find that Adenomatous polyps are the most common type of polyp in the colon, accounting for about 60% to 70% of all colonic polyps. Conventional-type adenomatous polyps can be classified as tubular, villous, or tubulovillous. Villous

adenomas are characterized by more than 75% villous features, whereas villous refers to finger-like or leaf-like epithelial projections. Tubulovillous adenomas have between 25% and 75% villous features. Less than 25% of villous features indicate a tubular adenoma. Adenomas are usually asymptomatic and found on routine CRC screening. Adenomas with villous features may be associated with a slight increase in the development of more advanced neoplasia or dysplasia compared to other types of adenomas (23-25).

EGFR assay might represent a suitable marker for the detection of circulating tumor cells in colon cancer patients. That mutation at exons 19, 20 and 21 of the *EGFR* gene of colon adenocarcinoma was significantly more frequently detected in CRC patients than in healthy controls supports the hypothesis that detection of mutation at those exons of *EGFR* gene are promising complementary marker for CRC staging and prediction of cancer progression and metastasis. RT-PCR assays with multiple tumor markers were shown to be superior in comparison to the assessment of single markers but due to their limited specificity; further data; investigation and clarification of the prognostic significance of genes and proteins implicated in metastatic process in CRC needs to be further investigated.

The therapy of colon and rectum tumors based on EGFR gene mutation remains under investigation, reserving huge potential for future applications and clinical interventions in conjunction with existing therapies. We expect, based on the previously exposed study, that the modulation of molecular markers, including the EGFR gene will stimulate the development of new therapeutic possibilities, making the treatment of colon and rectum tumors more effective in the Kurdistan region.

Acknowledgments

None.

Interest conflict

The authors declare that they have no conflict of interest.

Source of funding

None.

Availability of data and materials:

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Study limitation

This study had some limitations. The sample size was small, and the data were analyzed retrospectively. The subjects were patients in a single medical institution, so the results may not apply to all colorectal cancer patients. Because the subjects did not undergo the same treatments, the correlation between the EGFR mutation and clinical outcomes could not be evaluated properly. However, considering that there have been no studies on the EGFR mutation in colorectal cancer patients, our study is meaningful as it investigates the incidence rate of the mutation.

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022;72:7–33.

- de Castro-Carpeño J, Belda-Iniesta C, Casado Sáenz E, Hernández Agudo E, Feliu Batlle J, González Barón M. EGFR and colon cancer: A clinical view. Clin Transl Oncol 2008;10:6–13.
- Ponz-Sarvisé M, Rodríguez J, Viudez A, Chopitea A, Calvo A, García-Foncillas J, et al. Epidermal growth factor receptor inhibitors in colorectal cancer treatment: What's new? World J Gastroenterol 2007;13:5877–87.
- László L. Predictive and prognostic factors in the complex treatment of patients with colorectal cancer. Magy Onkol 2010;54:383–94.
- Kang W. Emerging role of vitamin D in colorectal cancer. World J Gastrointest Oncol 2011;3:123.
- Oh BY, Lee RA, Chung SS, Ho Kim K. Epidermal growth factor receptor mutations in colorectal cancer patients. J Korean Soc Coloproctol 2011;27:127–32.
- 7. Yun SH. Molecular Targeted Therapy in Colorectal Cancer. J Korean Soc Coloproctol 2004;20:180–8.
- Kim HA, Lee RA, Hwang DY, Park SH. The Significances of EGFR Overexpression in Colorectal Cancer. J Korean Soc Coloproctol 2005;21:36–41.
- Motalleb G, Pourrahmat E, Najafi S, Rashki A, Yegane Moghadam A, Mazaheri M, et al. Epidermal growth factor receptor gene expression evaluation in colorectal cancer patients. Indian J Cancer 2014;51:358–62.
- Repetto L, Gianni W, Aglianò AM, Gazzaniga P. Impact of EGFR expression on colorectal cancer patient prognosis and survival: A response [1]. Ann Oncol 2005;16:1557.
- 11. Sepulveda AR, Hamilton SR, Allegra CJ, Grody W, Cushman-Vokoun AM, Funkhouser WK, et al. Molecular biomarkers for the evaluation of colorectal cancer: Guideline summary from the American society for clinical pathology, college of American pathologists, association for molecular pathology, and American society of clinical oncology. J Oncol Pract 2017;13:333–7.
- 12. Febbo PG, Ladanyi M, Aldape KD, De Marzo AM, Hammond ME, Hayes DF, et al. NCCN task force report: Evaluating the clinical utility of tumor markers in oncology. JNCCN J Natl Compr Cancer Netw 2011;9:S-1.
- Krasinskas AM. EGFR Signaling in Colorectal Carcinoma. Patholog Res Int 2011;2011:1–6.
- Khader YS, Sharkas GF, Arkoub KH, Alfaqih MA, Nimri OF, Khader AM. The epidemiology and trend of cancer in Jordan, 2000–2013. J Cancer Epidemiol 2018;2018.
- 15. Hernes E, Harvei S, Glattre E, Gjertsen F, Fosså SD. High prostate cancer mortality in Norway: Influence of Cancer Registry information? Apmis 2005;113:542–9.
- 16. Chang GJ, Rodriguez-Bigas MA, Skibber JM, Moyer VA. Lymph node evaluation and survival after curative resection of colon cancer: Systematic review. J Natl Cancer Inst 2007;99:433–41.
- 17. Engstrom PF, Arnoletti JP, Benson AB, Chen Y-J, Choti MA, Cooper HS, et al. Colon cancer. J Natl Compr Cancer Netw 2009;7:778–831.
- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.
- 19. Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. Dis Colon Rectum 2010;53:1099.
- 20. Smith AJ, Driman DK, Spithoff K, Hunter A, Mcleod RS, Simunovic M, et al. Guideline for optimization of colorectal cancer surgery and pathology. J Surg Oncol 2010;101:5–12.
- Jin M, Frankel WL. Lymph Node Metastasis in Colorectal Cancer. Surg Oncol Clin N Am 2018;27:401–12.
- 22. Henrikson NB, Webber EM, Goddard KA, Scrol A, Piper M, Williams MS, et al. Family history and the natural history of colorec-

tal cancer: Systematic review. Genet Med 2015;17:702-12.

- Li X, Mohammadi MR. Combined Diagnostic Efficacy of Red Blood Cell Distribution Width (RDW), Prealbumin (PA), Platelet-to-Lymphocyte Ratio (PLR), and Carcinoembryonic Antigen (CEA) as Biomarkers in the Diagnosis of Colorectal Cancer. Cell Mol Biomed Rep 2023; 3(2): 98-106. doi: 10.55705/ cmbr.2023.374804.1088.
- 24. Alhashimi RA, Mirzaei A, Alsaedy H. Molecular and clinical analysis of genes involved in gastric cancer. Cell Mol Biomed Rep 2021; 1(3): 138-146. doi: 10.55705/cmbr.2021.355860.1056.
- Chubak J, McLerran D, Zheng Y, Singal AG, Corley DA, Doria-Rose VP, et al. Receipt of colonoscopy following diagnosis of advanced adenomas: An analysis within integrated healthcare delivery systems. Cancer Epidemiol Biomarkers Prev 2019;28:91–8.