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Introduction

Liver cancer is a prevalent cancer that accounts for 
about 50% of annual liver cancer deaths worldwide, with 
hepatocellular carcinoma(HCC) accounting for about 90% 
(1). Although surgery remains a primary treatment option, 
liver cancer is often diagnosed at an advanced stage, with a 
high degree of malignancy (2). Even with radical surgical 
resection, the recurrence rate after surgery is high, and the 
five-year survival rate is less than 30% (3). Therefore, it is 
crucial to conduct in-depth research on the mechanism of 
liver cancer occurrence and development to identify new 
screening indicators, therapeutic targets, and prognostic 
indicators.

Anoikis is a programmed cell apoptosis triggered by 
the detachment of cells from the extracellular matrix (4). 
It plays a crucial role in body development, tissue homeos-
tasis, disease occurrence, and tumor metastasis (5). Un-
der normal conditions, anoikis prevents the growth and 
spread of abnormal cells. However, cancer cells can resist 
anoikis, leading to aggressive metastasis and the spread 
of cancer (4, 6). Anoikis resistance is a natural molecular 
prerequisite for the aggressive metastatic spread of can-

cer. Therefore, understanding the interaction between cells 
and extracellular matrix and the regulation mechanism of 
anoikis is crucial for in-depth understanding of the occur-
rence and development of cancer and for cancer treatment 
research.

In this study, we analyzed 34 genes related to anoikis 
using the TCGA tumor database and calculated the diffe-
rential expression between liver cancer and paracancerous 
tissues using limma. We constructed a PPI network for 
gene GO enrichment analysis using the STRING data-
base. Using consensus clustering analysis based on anoi-
kis genes and TCGA tumor sample data as a training set, 
we identified molecular subtypes and divided the TCGA 
liver cancer samples into two subtypes. There were signifi-
cant prognostic differences between the subtypes. We ana-
lyzed the infiltration of immune cells using CIBERSORT, 
XCELL, SSGSEA, and TIMER based on the training 
set data. We performed univariate Cox screening of pro-
gnosis-related genes using differentially expressed genes 
between subtypes. We constructed a characteristic gene by 
removing redundant genes using LASSO Cox based on the 
prognosis genes and obtained 13 key prognostic genes. We 
analyzed the prognostic efficacy through the training set 

Identification of anoikis-related subtypes and construction of the prognostic model in 
hepatocellular carcinoma

Wanzhi Fang1, Zhong Chen2*

1 Nantong university, Nantong 226001, China
2 Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China

ARTICLE INFO ABSTRACT

Keywords:

Hepatocellular carcinoma, anoi-
kis, prognosis, bioinformatics 
analysis

Original paper

Article history:
Received: July 28, 2023
Accepted: August 02, 2023
Published: September 30, 2023

* Corresponding author. Email: chenz9806@163.com
  Cellular and Molecular Biology, 2023, 69(9): 219-228

Anoikis resistance, which enables tumor cells to survive detachment-induced cell death, plays a crucial role in 
cancer growth and metastasis. In hepatocellular carcinoma (HCC), understanding the molecular basis of anoi-
kis resistance is essential for developing effective treatments. This study aims to identify HCC subtypes based 
on anoikis gene expression, construct a prognostic signature, and explore treatment responses according to 
patient risk. Using the TCGA tumor database, we analyzed differential gene expression between HCC and ad-
jacent tissues. Through consensus clustering on anoikis apoptotic genes, two distinct molecular subtypes were 
identified, showing significant prognostic differences. We further performed principal component analysis and 
survival difference analysis on these subtypes. Additionally, we analyzed immune cellular infiltration using 
various tools. From univariate Cox screening, we identified 13 key prognostic genes among differentially ex-
pressed genes between subtypes. Using the LASSO Cox algorithm, we constructed a prognostic model based 
on these characteristic genes. The model's performance was evaluated using training and verification sets, 
categorizing patients into high and low-risk groups based on the model's median score. Survival differences 
were compared between these groups. Univariate and multivariate Cox analyses confirmed the independence 
of the signature genes as prognostic factors. Finally, we predicted relevant molecular responses and potential 
drug treatment effects. Dysregulation of most anoikis genes was observed in the TCGA-LIHC cohort, and 
the identified molecular subtypes displayed distinct prognostic outcomes. The constructed prognostic model 
demonstrated superior predictive performance, with better drug efficacy prediction in the low-risk group. In 
conclusion, this study developed a robust prognostic model for HCC based on anoikis-related genes, providing 
valuable insights for personalized treatment strategies. The identified key prognostic genes and their mecha-
nisms offer potential targets for targeted therapies against anoikis resistance in HCC.

Doi: http://dx.doi.org/10.14715/cmb/2023.69.9.34                               Copyright: © 2023 by the C.M.B. Association. All rights reserved.

Cellular and Molecular Biology
E-ISSN : 1165-158X / P-ISSN : 0145-5680

www.cellmolbiol.org 



220

Wanzhi Fang and Zhong Chen / Anoikis subtypes and prognostic model in hepatocellular carcinoma, 2023, 69(9): 219-228

and verification and divided the group into high and low-
risk groups, comparing the survival difference. We verified 
that the characteristic gene was an independent prognostic 
factor using univariate and multivariate Cox. Finally, we 
predicted the relevant molecular responses and the effect 
of drug treatment and found that drug treatment had better 
predictive performance in the high-risk group.

Materials and Methods

Dataset preparation and preprocessing analysis data. 
This study utilized tumor and paracancerous tissues 

from 363 patients in the TCGA database, with 165 cases 
under the age of 60 and 198 cases over the age of 60, 118 
cases of women, and 245 cases of men. Additionally, data 
from 44 cases, including 20 cases over 60 years old, 6 cases 
of women, and 58 cases of men were included. Transcrip-
tome data of 28 immune cell types were collected from a 
related study. The Gene Expression Omnibus (GEO) and 
The Cancer Genome Atlas (TCGA) public gene expression 
data were searched for complete clinical annotations for 
hepatocellular carcinoma (LIHC). RNA-sequencing data 
of gene expression (FPKM values) and clinical informa-
tion were downloaded for the TCGA dataset using the R 
package ‘TCGAbiolinks’, and the data of HCC were selec-
ted according to the clinical information. The gene expres-
sion matrix file for GSE116174 was downloaded from the 
GEO database (http://www.ncbi.nlm.nih.gov/geo/). The 
Illumina sequencing probe annotation files are available 
under GPL13158. The TCGA_LIHC and GSE116174 data 
undergo the following steps of processing: (1) Probes are 
converted to gene signatures; (2) Probes corresponding 
to multiple genes are removed; (3) For expressions with 
multiple gene signatures, the median value of the case is 
taken. The preprocessed TCGA-LIHC data includes 363 
cases of cancer tissue and 50 cases of paracancerous tissue 
samples. Anoikis-related genes were obtained from the 
MSigDBv7.5.1 database, totaling 34 genes.

Differential Expression Analysis   
Differential expression analysis was performed on 

HCC tumor tissues and paracancerous tissues using the 
'limma' package in R. The differentially expressed genes 
were filtered based on FDR <0.01, and volcano and heat 
maps were generated using the R packages 'ggplot2' and 
'ComplexHeatmap'. Boxplots between clinical characte-
ristics were drawn using ggplot2, and the P value of the 
difference between the two groups was calculated using 
the Wilcoxon rank sum test. The Kruskal-Wallis test was 
used to calculate the P value between multiple groups. A 
statistically significant difference was defined as P<0.05.

Protein-protein interaction (PPI) network analysis
To perform PPI network analysis, we utilized the 

STRING database (https://string-db.org/), which is a 
comprehensive online database of known and predicted 
protein interactions. The interactions included both phy-
sical and functional associations and were derived from 
a variety of sources, including computational predictions, 
high-throughput experiments, automated text mining, 
and co-expression networks. We then mapped the anoikis 
death-related genes onto the PPI network, setting an inte-
raction score threshold of >0.4.

Consistent clustering 
To explore the role of apoptosis-related genes in HCC, 

we employed the 'ConsensusClusterPlus' software pac-
kage, utilizing 1000 iterations and an 80% resampling 
rate, with the Pam method and Spearman distance to clas-
sify HCC patients into four distinct subtypes. We then uti-
lized the Kaplan-Meier method to generate survival curves 
and compared survival differences between the different 
subgroups.

Construction and validation of the prognostic signa-
ture for HCC patients

In this study, the limma package in R was used to cal-
culate the differentially expressed genes (DEG) |log2FC| 
> 0.585 and FDR < 0.01 of different molecular subtypes 
as the screening criteria for differential expression. Sub-
sequently, genes associated with prognosis were screened 
using univariate Cox analysis for subtype differentially 
expressed genes. LASSO regression analysis was then 
used to reduce multicollinearity and identify important 
genes for constructing prognostic models. The normalized 
expression matrix of genes was used as the independent 
variable in the regression, while the dependent variables 
were overall survival and patient status in the TCGA co-
hort. The risk score of the patient was calculated based 
on the expression level of the gene and its corresponding 
regression coefficient:

Risk score =

The study analyzed the prognostic value of n genes, 
with expi representing the expression value of gene i and 
βi representing its regression coefficient. Patients were 
categorized into high-risk and low-risk groups based on 
the median risk score, and the 'survminer' package was uti-
lized to compare the survival difference in OS between the 
two groups. The 'timeROC' package was used to assess the 
predictive value of prognostic features through time-de-
pendent ROC curve analysis. Univariate and multivariate 
Cox analyses were conducted to examine the independent 
prognostic value of the risk score. The same formula was 
employed to calculate the risk score in the validation co-
hort.

Enrichment analysis 
GO analysis is a widely used bioinformatics tool for 

annotating genes and their products, which includes three 
categories: cellular components (CC), molecular functions 
(MF), and biological pathways (BP). KEGG is a collection 
of databases that provide information on genomes, biolo-
gical pathways, diseases, and chemicals. In this study, we 
utilized the clusterProfiler package to perform GO func-
tional enrichment analysis and KEGG pathway analysis 
on differentially expressed genes between anoikis sub-
types of hepatocellular carcinoma, in order to predict their 
potential molecular functions. P < 0.05 was considered to 
demonstrate statistically significant differences.

Estimation of immune cell infiltration in the tumor 
microenvironment 

In this study, we utilized the ssGSEA algorithm to 
quantify the relative abundance of cellular infiltrates in 
the HCC tumor microenvironment (TIME). To identify 
infiltrating immune cell types, we used a gene set obtained 
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anoikis-related genes using the STRING database. Our re-
sults indicated that SRC, STK11, and PIK3CA were highly 
correlated in the network, suggesting that these genes may 
play a crucial role in the anoikis resistance of HCC tumor 
cells, as shown in Figure 3A. Additionally, GO enrichment 
analysis revealed that anoikis-related genes were prima-
rily involved in tumor resistance to anoikis and tumor drug 

from Charoentong's research (PMID: 28052254), which is 
enriched in various human immune cell subtypes, such as 
activated CD8+ T cells, activated dendritic cells, macro-
phages, natural killer T cells, and regulatory T cells. To 
calculate the stromal score, immune score, and tumor pu-
rity score, we utilized the 'ESTIMATE' package in R.

Predicting drug sensitivity  
We utilized the GDSC Cancer Genomics Drug Sensi-

tivity Database to determine the drug IC50 value of each 
sample in the training set using the calcPhenotype algo-
rithm of the R package oncoPredict. Spearman correlation 
was calculated to evaluate the correlation between small 
molecule drug sensitivity and risk score. Additionally, 
we compared the difference in small molecule drug IC50 
between high and low risk score groups.  

Statistical analysis
The statistical analysis was conducted using R lan-

guage (version 4.1.2). Survival curves were created using 
the Kaplan-Meier method, and group differences were 
compared using the log-rank test. Univariate and multiva-
riate Cox regression models were utilized in combination 
with clinical features to determine the independent pro-
gnostic value of the risk score. The ROC curves were used 
to estimate the predictive efficiency of risk models for 1-, 
3-, and 5-year OS. A P value of less than 0.05 was consi-
dered statistically significant.

Results

Dysregulation of anoikis gene expression in hepatocel-
lular carcinoma

The study analyzed 363 patient tumor tissue samples 
and 50 paracancerous tissue samples from TCGA-LIHC. 
The differential expression of anoikis-related genes in pa-
racancerous tissues and tumor tissues was counted, revea-
ling extensive-expression disorders in the TCGA-LIHC 
cohort. Most of the anoikis genes showed a significant 
effect on tumor progression, either promoting or inhibiting 
it. These findings demonstrate the practical significance of 
researching the role of anoikis genes in hepatocellular car-
cinoma, as is shown in Figure 1.

In the TCGA-LIHC cohort, we investigated the expres-
sion of anoikis-related genes in different clinical groups of 
LIHC patients. Our findings revealed that the expression of 
these genes varied across different age groups, sex groups, 
and clinical stages (clinical stage I/II and clinical stage III/
IV), as is shown in Figure 2. To further explore the interac-
tion of these genes, we constructed a PPI network based on 

Figure 2. The figure displays the differential expression of genes rela-
ted to anoikis in different clinical feature groups, including (A) age, 
(B) sex, and (C) clinical stage.

Figure 1. (A) displays the changes in expression levels of anoikis 
genes in TCGA-LIHC samples, comparing low expression to high 
expression. (B) is a heat map that illustrates the difference in expres-
sion levels of anoikis genes between TCGA-LIHC cancerous tissues 
and non-cancerous tissues.

Figure 3. (A) displays the protein interaction network of genes related 
to anoikis, while (B) shows the Spearman correlation of these genes. 
(C) illustrates the Gene Ontology Biological Process enrichment of 
these genes.
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resistance functional pathways, as shown in Figure 3C. 
Furthermore, we analyzed the correlation among all anoi-
kis genes and found that there was a significant positive 
correlation between PIK3CA and ITGB1, as demonstrated 
in Figure 3B.

Molecular subtype identification based on anoikis 
genes in hepatocellular carcinoma

In this study, the TCGA-LIHC tumor samples were 
analyzed by consensus clustering based on the expression 
profiles of 34 anoikis-related genes. The CDF curve was 
close to flat when k=2 in the range of 0.1-0.9 (Figure 4A, 
B), indicating that the number of optimal clusters was 2. 
The samples were then divided into two subtypes, which 
had a relatively clear separation with clear boundaries, 
further verifying the stability of the clusters (Figure 4C). 
The differences in clinical characteristics were compared 
between the two subtypes, and it was found that there were 
significant differences in the prognostic survival curves of 
samples between subtypes (P<0.05) (Figure 4D). The pro-
gnosis of Cluster2 was good, and the prognosis of Cluster1 
was poor. The study also analyzed the expression of anoi-
kis-related genes in the two subtypes and found significant 
differences in their expressions. Additionally, differences 
in clinical characteristics such as age, clinical stage, and 
gender were compared between the two subtypes, and 
significant differences were found. Principal component 
analysis was carried out, and the study found that anoi-
kis genes can divide the HCC samples into two clusters 

(Figure 4G), further verifying the accuracy of the study in 
dividing the samples into two subtypes.

Immune microenvironment infiltration among dif-
ferent subtypes of hepatocellular carcinoma

To investigate the correlation between anoikis subtypes 
and immune status, the 'ESTIMATE' package was used to 
analyze the differences in the immune score, stromal score, 
and tumor purity score in the two subtypes. The analysis 
revealed that there were differences in matrix score and tu-
mor purity score between the two subtypes, with Cluster1 
having a higher tumor purity score, as is illustrated in Fi-
gure 5. To further understand the differences in the tumor 
immune microenvironment of the two subtypes, the study 
employed the Cibersort package to determine the immune 
scores of the different molecular subtypes. The analysis 
showed that there was a significant difference in the infil-
tration scores of immune cells in the two subtypes, parti-
cularly the score of stromal cells. This finding highlights 
the close relationship between anoikis and extracellular 
matrix, and the differential expression was significant and 
similar to that of immune cells obtained from the Cibersort 
package among different subtypes.

Anoikis-related signature genes in hepatocellular car-
cinoma

To understand the biological functions of different sub-
types, we calculated 742 differentially expressed genes 
between two anoikis subtypes of HCC using limma and 
performed enrichment analysis. The results of GO enrich-
ment analysis revealed that the differentially expressed 
genes were mainly involved in biological processes such 
as chromosome segregation, mitotic nuclear division, and 
DNA replication. The KEGG enrichment analysis showed 
that these genes were mainly enriched in complement and 
coagulation cascades, cell cycle, drug metabolism-cyto-
chrome P450, and other signaling pathways. For details, 
please refer to Figure 6 for the results.

Univariate Cox regression analysis was conducted 
on 742 differential genes between two subtypes. Out of 
these, 279 genes were screened and correlated with pro-

Figure 4. (A)displays patients were divided into two distinct gene 
clusters (C1and C2) by using consistent clustering (B)shows the cu-
mulative distribution function when k takes different values(C)shows 
the relative change in area under the CDF curve between k and k-1(D) 
presents the KM curve between two subtypes, (E) shows the differen-
tial expression of anoikis genes between the two subtypes and clinical 
characteristics. 

Figure 5. (A-D) shows the boxplot of immune scores in two subtypes, 
while (E) displays the heat map of immune cell infiltration scores in 
the same subtypes.
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gnosis when the significance P value was less than 0.01. 
The top 6 genes were selected, and a KM map of top 6 
was drawn. The high and low-risk groups were divided 
based on the median value of gene expression (refer to 
Figure 7). Using LASSO Cox, redundant genes were 
removed based on 279 prognostic-related genes, and 13 
key prognostic genes were screened out (refer to Figure 8) 
(Table 1). A risk score for predicting sample survival was 
established by weighting the expression of these 13 genes 
and the LASSO regression coefficient. The model (where 
exp represents gene expression level, and coef represents 

LASSO regression coefficient) indicates that a regression 
coefficient greater than 0 indicates that the gene is a risk 
factor, and less than 0 indicates that the gene is a protective 
factor.

The study calculated the risk score of tumor samples 
using a risk score model and divided them into high and 
low risk score groups based on the median score. The pre-
diction results were evaluated by ROC and showed that 
the prognosis of the high-risk group samples was worse 
in both the training set TCGA-LIHC and the independent 
data set GSE116174. The AUCs of the prediction results 
for 1 year, 3 years, and 5 years were also reported (Figures 
9 and 10). 

The study further conducted univariate and multiva-
riate Cox regression analysis to explore the relationship 
between the prognostic value of the model and other 
clinical factors. The results showed that the constructed 
prognostic model was an independent prognostic factor 
(P<0.05).

In this study, the validation set GSE116174 was used to 
analyze the clinical characteristics (such as clinical stage 
and age) and risk score of a prognostic model through uni-
variate and multivariate Cox regression analysis. The re-
sults indicate that the prognostic model is an independent 
prognostic factor (P<0.05, Figure 11). Additionally, the 
study examined the correlation between characteristic 
genes and clinical characteristics of patients in the training 
and validation sets, revealing differences in characteristic 
genes across different clinical characteristics.

Figure 6. (A) KEGG enrichment; (B) GO BP enrichment; (C) GO MF 
enrichment; (D) GO CC enrichment.

Figure 7. Top6 prognostic genes (high and low-risk groups are divi-
ded according to the median value).

Figure 8. (A) shows the changing track of the independent variable of 
LASSO regression, where the abscissa represents the logarithm of the 
independent variable Lambda, and the ordinate represents the coeffi-
cient of the independent variable. (B) displays the confidence interval 
of each Lambda in the LASSO regression. Lastly, (C) illustrates the 
regression coefficient of the key prognostic gene LASSO.

Signature gene coef
UCK2 0.202490650859975
HMMR 0.14279845076107
CFHR3 -0.0290762840713765 
PIGU 0.0199887821154947 
CYP2C9 -0.00672281431509634 
LCAT -0.0450505301284314
SLC1A5 
G6PD
ANXA10 
PON1 
FAM83D
FTCD 
EPO

0.0348243861135984 
0.0485871491731648 
-0.0227607156567921
-0.0150427022120064 
0.0227473623863949 
-0.0362301041370092 
0.117756570457452

Table 1. Key prognostic genes were identified in the study. 
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Relationship between signature genes and the tumor 
microenvironment in hepatocellular carcinoma

Using TCGA-LIHC expression information, we em-
ployed ssGSEA to determine the enrichment score of tu-
mor characteristic pathways and evaluate the characteris-
tic pathways of group differences. We also compared the 
differences in 50 signature pathways between the high and 
low-risk score groups. Our results indicate significant dif-
ferences in active oxygen pathway, late estrogen response 

pathway, myogenesis pathway, Wnt/β-catenin, and other 
pathways between high and low-risk score groups (Figure 
12). Additionally, we calculated the immune score, stro-
mal score, and tumor purity score using the ESTIMATE 
tool and displayed box plots (Figure 13E-H). Our fin-
dings revealed that the low-risk group had higher Stro-
mal scores. Furthermore, we used the Cibersort method to 
calculate immune cell infiltration and found that the infil-
tration scores of immune cells such as macrophage M1, 
macrophage M2, and memory T cells in the low-risk group 
were significantly higher than those in the high-risk group 
(P<0.05, Figure 14I). The results of the Cibersort method 
were consistent with the ESTIMATE score, indicating a 
consistent immune trend between the two methods (Figure 
13A-D).

Drug resistance among different risk score groups of 
hepatocellular carcinoma

The Genomics of Cancer Drug Sensitivity (GDSC) 
project identified many clinically active genes as targets of 
anticancer drugs, including EGFR. To evaluate the poten-
tial impact of risk score on drug response, the R package 
oncoPredict and the GDSC database drug information 
were used to predict the drug IC50 value of TCGA-LI-
HC data set samples. As shown in Figure 14, the corre-
lation between IC50 value and risk score was calculated, 
and several drugs were compared, including Sorafenib, 
Cisplatin, Vorinostat, and Vinblastine. The study found 
significant differences in the IC50 values of these drugs 
between high and low-risk score groups. Specifically, the 

Figure 9. (A) shows a comparison of the prognosis between high 
and low-risk score groups. (B) displays the AUC curves of the risk 
score for 1-, 3-, and 5-year survival prediction. (C) and (D) depict 
the risk score sorted from small to large, with the abscissa indica-
ting the sample. The vertical axis of (C) represents the risk score, 
while the vertical axis of (D) represents the survival time. Finally, (E) 
illustrates the z-score heat map of key prognostic gene expression. 
As the sample risk score increases, the expression level of each gene 
increases or decreases.

Figure 11. (A) shows the results of single factor Cox regression ana-
lysis, while (B) displays the multivariate Cox regression analysis. (C) 
depicts the single-factor Cox regression analysis, and (D) illustrates 
the multivariate Cox regression analysis. 

Figure 10. (A) shows a comparison of prognosis between high and 
low-risk score groups. (B) displays AUC curves of risk score for 1-, 
3-, and 5-year survival prediction. In (C, D), the risk score is sorted 
from small to large, and the abscissa indicates the sample. The vertical 
axis of (C) represents the risk score, and the vertical axis of (D) repre-
sents the survival time. Finally, (E) shows the z-score heat map of key 
prognostic gene expression. As the risk score of the sample increases, 
the expression level of each gene increases/decreases.
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IC50 value of Vinblastine was significantly negatively 
correlated with the risk score, and its IC50 value was also 
significantly higher in the low-risk group. As is shown in 
Figure 14, these results suggest that patients in the high-
risk group may be more sensitive to vincristine treatment, 
while anoikis resistance of tumor cells may lead to sorafe-
nib resistance.

Discussion

Hepatocellular carcinoma is the most common type of 
primary liver cancer and the third leading cause of cancer-
related death worldwide (7). The high metastasis rate and 
drug resistance of HCC lead to frequent tumor recurrence 
and poor prognosis. Therefore, we need to seek more ef-
fective treatment measures and detection methods to im-

prove the survival time and prognosis of HCC patients. In 
recent years, systemic therapy has been the main treatment 
for advanced liver cancer; several drugs have been shown 
to have significant survival benefits as single agents, such 
as first-line drugs sorafenib and lenvatinib, second-line 
drugs regorafenib, Cabozantinib combined with ramuciru-
mab, etc. Six recent systemic therapies based on phase 3 
trials (atezolizumab plus bevacizumab, sorafenib, lenva-
tinib, regorafenib, cabozantinib plus ramucirumab) has 
been approved. In addition, there are currently ongoing 
clinical trials of various immune checkpoint inhibitors in 
combination with tyrosine kinase inhibitors or anti-VEGF 
therapies (1, 8). However, based on the existing treatment 
options, the objective response rate of patients is not ideal. 
The response rate of single immune checkpoint inhibitors 
(ICIs) treatment is only about 15-20% (9), while atezo-
lizumab combined with The objective response rate with 
bevacizumab was 35.4% (10). Research has indicated that 
the acquisition of anoikis resistance in tumor cells may 
be linked to poor treatment outcomes for patients. A study 
using sorafenib to treat renal cell carcinoma found that the 
drug was less effective in Anoikis-resistant human renal 
carcinoma cells. Anoikis resistance allows HCC cells to 
evade immune surveillance and resist traditional chemo-
therapy drugs, keeping them alive in circulation and lea-
ding to metastatic lesions. Therefore, understanding the 
anti-apoptosis mechanism of HCC cells is crucial in pre-
venting the invasion and metastasis of HCC cells.

Anoikis, a type of programmed cell death, is trigge-
red when cells detach from the extracellular matrix (11). 
Anoikis resistance is a significant contributor to cancer 
progression and is linked to tumor metastasis and therapy 
resistance (12, 13). In the case of hepatocellular carcino-
ma, anoikis resistance is a key factor in tumor progression 
and recurrence, leading to poor prognosis and reduced 
survival rates (2). To better comprehend the interplay 
between tumor cells and the extracellular matrix, as well 
as the regulation mechanism of anoikis, we conducted an 
extensive study. In recent years, studies have found that 
certain factors or drugs inhibit the anoikis of liver cancer 
cells through some signaling pathways.  These signaling 
pathways are not completely separated, but are intercon-
nected and interact to promote liver cancer cell metasta-
sis.  One of the important signaling pathways is the PI3K/
Akt/mTOR signaling pathway (14-16), which can regulate 
anoikis resistance in various ways.  For example, Akt can 
directly or indirectly activate downstream effector mole-
cules such as Bcl-2 family proteins, NF-κB and FOXO, 
thereby preventing mitochondrial outer membrane per-

Figure 12. Differences in characteristic pathways between high and 
low-risk score groups.

Figure 13. (A-H) shows the immune score, stromal score, and tumor 
purity score. The comparison of differences between the high and 
low-risk groups of immune-related cells is presented in section (I).

Figure 14. (A) displays the Spearman correlation between the risk 
score and drug IC50, while (B) shows the correlation of IC50 values 
with the high and low-risk groups.
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meabilization and caspase activation (16, 17); mTOR can 
affect anoikis by regulating autophagy and metabolic ba-
lance (18); PI3K can affect cytoskeleton and nuclear sta-
bility by regulating Rho GTPase and polymeric nucleotide 
kinase (PAN) (19). The Wnt/β-catenin signaling pathway 
is a crucial pathway that regulates epithelial-mesenchymal 
transition, thereby promoting the proliferation, invasion, 
and migration of liver cancer cells by regulating multiple 
target genes (20, 21). One such example is the binding of 
β-catenin to TCF/LEF family transcription factors that 
activate the expression of c-Myc, cyclin D1, MMPs, and 
other genes in the nucleus (22-24). Additionally, Wnt can 
bind to Frizzled receptors and activate Rac/Rho GTPases 
and downstream molecules such as JNK (25, 26). In 
addition to the aforementioned signaling pathways, the 
MAPK/ERK signaling pathway is also involved in regu-
lating anoikis resistance (27). This pathway has the ability 
to activate Bcl-2 family proteins, ring-finger protein 126, 
and other molecules, which in turn can protect liver cancer 
cells from undergoing anoikis.

Our study aimed to investigate the interaction between 
tumor cells and the extracellular matrix, as well as the re-
gulation mechanism of anoikis. We analyzed 363 tumor 
tissue samples and 50 paracancerous tissue samples of 
TCGA-LIHC and discovered dysregulated expression of 
most anoikis genes. We then conducted consistency clus-
tering analysis on the tumor samples of LIHC and divided 
the tissue samples into two subtypes. Our findings indi-
cated that Cluster2 had a better prognosis. Further ana-
lysis of the immune infiltration of the two subtypes and 
the functional analysis of differentially expressed genes 
showed that Cluster2 had a better prognosis. The diffe-
rential genes were mainly enriched in signaling pathways 
such as chromosome segregation, mitotic nuclear divi-
sion, DNA replication, and cell cycle. Additionally, we 
observed a correlation between quality transformation 
and PI3K/Akt (16). To gain a further understanding of the 
biological functions of different subtypes, we calculated 
742 differentially expressed genes between the two LIHC 
anoikis subtypes using limma and enriched them. We then 
performed univariate Cox regression analysis on the dif-
ferential genes between subtypes and identified 279 genes 
that were significantly correlated with prognosis when the 
P value was less than 0.01. Next, we used LASSO Cox to 
remove redundant genes and identified 13 key prognostic 
genes. Among these genes, we found that high-risk genes 
are associated with the promotion of liver cancer develop-
ment. Recent experimental findings have shed light on the 
mechanisms behind the development of HCC. UCK2 acti-
vates the EGFR-AKT pathway and promotes metastasis of 
HCC (28), while HMMR stimulates the development of 
nonalcoholic steatohepatitis and HCC through the CEBPα 
axis (29). PIGU activates the NF-κB pathway, leading to 
increased immune escape and drug resistance in HCC (30). 
SLC1A5 is a valuable predictor of HCC due to its role in 
ferroptosis (31). FAM83D is an important ERK-related 
gene that activates the MEK/ERK signaling pathway to 
promote liver cancer cell proliferation (32). Additionally, 
EPO promotes HCC cell proliferation through hypoxia-
induced translocation of its specific receptors, leading to 
metastasis and drug resistance (33, 34). These findings 
support the reliability of the prognostic model indicators 
presented in this paper.

As mentioned before, we first developed the prognostic 

model and calculated the risk score to predict the survi-
val time of each sample by weighing the expression of 13 
genes with LASSO regression coefficients. The model's 
detection efficiency was verified through data from the trai-
ning set TCGA-LIHC and the verification set GSE116174. 
We then used ssGSEA to calculate the enrichment score 
of tumor characteristic pathways based on the expression 
information of TCGA-LIHC. We evaluated differential 
pathways between groups and found that the differences 
between high and low-risk groups were primarily concen-
trated in the active oxygen pathway, late estrogen response 
pathway, myogenesis pathway, Wnt/β-catenin, and other 
pathways. These findings are consistent with existing re-
search data. The studies conducted by Ma WL et al, Shi-
mokawa M et al, and Li K et al have shown that hepatic 
androgen receptors, intracellular reactive oxygen species, 
and ZNF32 respectively play a role in regulating anoikis 
sensitivity in liver cancer cells. Ma WL et al found that 
hepatic androgen receptor can enhance anoikis and inhi-
bit HCC cell migration by inhibiting p38 phosphorylation/
activation and nuclear factor kappa B (NF-κB)/matrix 
metallopeptidase 9 (MMP9) pathway (35). Shimokawa 
M et al. found that increased intracellular reactive oxygen 
species (ROS) stimulated nuclear factor erythroid-derived 
2 (Nrf2) and quinone oxidoreductase 1 (Nqo1), resulting 
in excessive oxidative stress and significantly increased 
anoikis sensitivity (36). This suggests that targeting Nqo1 
activity may be a potential strategy for adjuvant therapy 
for liver cancer. Li K et al. found that ZNF32 promotes 
anoikis resistance by maintaining redox homeostasis and 
activating Src/FAK signaling (37). Wang W et al. disco-
vered that overexpression of PRDX4 led to a decrease in 
β-TrCP-mediated β-catenin ubiquitination and an increase 
in β-catenin protein stability (20). This ultimately resul-
ted in the activation of β-catenin signaling and resistance 
to anoikis. These findings suggest that targeting these pa-
thways may be a potential avenue for adjuvant therapy in 
liver cancer. Finally, we selected several common clinical 
drugs for hepatocellular carcinoma, Sorafenib, Cisplatin, 
Vorinostat, and Vinblastine. We speculated that patients 
in the high-risk group may be Vincristine (Vinblastine) 
treatment is more sensitive. Additionally, tumor cells that 
exhibit anoikis resistance may also display resistance to 
sorafenib treatment (38).

Conclusion
Our study revealed that the majority of anoikis genes 

exhibited widespread dysregulation in the TCGA-LIHC 
cohort. Through consensus clustering, we were able to 
identify molecular subtypes and divided the samples into 
two subtypes that displayed significant prognostic diffe-
rences. We then screened 13 key prognostic genes to deve-
lop a risk-scoring model, which demonstrated a high AUC 
value and strong predictive capabilities. Our drug efficacy 
prediction also showed promising results for the high-risk 
group.
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