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Introduction

The skin is the largest organ of the human body that pro-
tects it from the external environment (1). Wounds occur 
when the natural structure and function of the skin are da-
maged (2). In this process, peripheral blood mononuclear 
cells, resident skin cells, extracellular matrix, cytokines, 
chemokines, growth factors, and regulatory molecules 
participate in the wound healing process (3). Chronic ul-
cers are generally caused by decubitus ulcers, leg ulcers, 
and burns. Wound healing is a dynamic and complex pro-
cess of tissue regeneration and growth progression in four 
different stages (a) coagulation and homeostasis (imme-
diately after injury). (b) The inflammatory stage (shortly 
after tissue damage) during which swelling occurs. (c) the 
reproductive period, in which new tissues and blood ves-
sels are formed, and (d) the stage of puberty, in which new 
tissues are regenerated (4-7). On the other hand, chronic 
wounds do not progress in the normal stages of healing 
and cannot be repaired in a timely and regular manner (7). 
Today's "gold standard" treatments mainly include full-
thickness skin grafts, as well as skin flaps, skin extension 
techniques, and skin replacements (8-10). However, the 
serious problems associated with the above methods are 
usually the lack of donor site and hypertrophic or colloi-
dal scars, which eventually lead to severe functional and 
psychosocial problems (11, 12). In recent decades, various 
bioengineering and synthetic alternatives have been deve-

loped that are generally located within the damage and 
provide barrier function along with protection against mi-
croorganisms, reduction of wound pain, and promotion of 
wound healing by tissue regeneration (13-15). These skin 
grafts represent a heterogeneous group of wound dres-
sings that can be placed on the wound site to temporarily 
or permanently replace skin functions, depending on the 
characteristics of the product (16). Dermal substitutes can 
be categorized into two primary classifications, namely 
biological and artificial substitutes. The former exhibits 
a more preserved extracellular matrix architecture, while 
the latter can be artificially synthesized upon requirement 
(17). Recently, hydrogels have been considered one of the 
promising materials for wound dressing (18). Hydrogels 
are extensively employed in wound healing due to their 
resemblance to the native extracellular matrix (ECM) and 
their capacity to generate a moist environment (19). This 
review article discusses the types of hydrogels and nano-
hydrogels, their properties, and their application in wound 
healing.
 
Skin structure and function

The skin comprises three layers, the epidermis, the dermis, 
and the hypodermis, all of which are different in anatomy 
and function. The structure of the skin is composed of a 
complex network that acts as the body's primary barrier 
against pathogens, ultraviolet rays, chemicals, and mecha-
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nical damage (20). It is also involved in immunological 
monitoring, sensory perception, control of imperceptible 
fluid loss, and general homeostasis. The skin is also very 
compatible with different thicknesses and specialized 
functions in other body parts (21, 22).

Skin wounds

Wounds are attributable to a diverse range of causative 
agents, comprising surgical interventions, traumas, extra-
neous factors (including but not limited to compression, 
thermal burns, and lacerations), or pathological states 
such as diabetes or vascular disorders. These injuries are 
categorized as either acute or chronic wounds, contingent 
upon the underlying etiology and resultant implications 
(23). Skin wound healing demonstrates a unique cellular 
mechanism of action that is unique and involves the inte-
raction of several cells, growth factors, and cytokines (24). 
The process of regeneration is characterized by a series 
of sequential steps that are subject to regulation by gene 
expression through autocrine or paracrine mechanisms. 
The cessation of active operations is accomplished using 
gene deactivation as the regeneration process progresses 
(25). In the initial few minutes following an injury, blood 
platelets adhere to one other and the wound site. Platelets 
become amorphous when they come into contact with col-
lagen, resulting in activation and accumulation. Further-
more, thrombin is synthesized, which initiates the coagu-
lation cascade (26, 27).

Types of wounds

 Wounds are typically categorized as either acute or chro-
nic (28). Acute wounds, which include traumatic and 
surgical wounds, progress through the standard stages of 
wound healing, resulting in an anticipated and systematic 
tissue repair sequence (29). Conversely, chronic ulcers are 
characterized by an irregular healing process and can be 
primarily classified as vascular ulcers (including venous 
and arterial ulcers), diabetic ulcers, and pressure ulcers 
(30). The fundamental physical indications of chronic 
wounds, such as discharge, persistent infection, and necro-
sis, contribute to the complexity of wound management 
and care (31). Although these different unhealed wounds 
may have other causes, they all have common wound cha-
racteristics, such as elevated protease levels, increased 
inflammatory cytokines, stable oxygen species (ROS), 
the presence of aging fibroblasts, long-term infection, and 
cells inefficient and inadequate (32).

Wound Dressings

Dry wounds were used to treat wounds until the mid-
1970s. Dry (traditional) dressings, which are more com-
mon in Third World countries, do not have many of the 
characteristics of an ideal dressing. These dressings adhere 
to the wound bed, causing pain and tissue damage again 
when the dressing is removed. Dry dressings cannot create 
and maintain a moist environment that is very effective in 
speeding up the wound healing process. The use of these 
dressings is limited to conditions where the wound is dry 
and clean or used only as a secondary dressing. In 1969, 
Winter concluded in his clinical observations that in most 
wounds exposed to the open air, a scab forms around the 

wound that covers the wound and prevents the production 
of epidermal cells. Delays wound healing (33). Recent 
studies have shown that wound healing occurs faster in 
humid environments than in dry environments (34). It has 
also minimized the time it takes for the wound to heal. Wet 
dressings (modern), by creating additional inflammatory 
secretions and proper passage of steam and air, make a 
moist healing environment for the wound, which increases 
the speed of healing (35).
Regardless of the severity of the wound, it is essential to 
take care of it according to the recommendations of the 
wound care professional. The difference between using 
a bandage and dressing should be considered. Dressings 
are designed to be applied to the wound while bandages 
hold the dressings in place (36). In the event of a wound is 
sealed with a dressing, it is subjected to a consistent expo-
sure of proteinases, chemotactic agents, supplements, and 
growth factors that are devastated in the proximity of the 
wound. Consequently, during the latter half of the twen-
tieth century, the development of occlusive dressings was 
initiated to safeguard and establish a damp environment 
for wounds. These dressings have been observed to expe-
dite epithelialization, and collagen synthesis, and promote 
angiogenesis by inducing hypoxia in the wound bed and 
lowering the pH of the wound bed, which in turn curbs 
wound infection (37).

Hydrogel

Polymers are considered one of the most essential sources 
for the production of wound dressings. Depending on the 
characteristics and needs of wounds, various types of bio-
logical and synthetic polymer dressings have been deve-
loped (38). The use of synthetic polymers such as polyu-
rethane, polyester, and polylactic acid is less considered 
due to limitations such as low moisture absorption, ina-
bility to separate them from new tissue, and slow wound 
healing (39). In contrast, polymers of natural origin such 
as alginate, chitosan, collagen, hyaluronic acid, and cellu-
lose, which are highly biodegradable and biodegradable 
due to their high compatibility and biodegradability, are 
particularly valuable in some cases. Alginate has moist 
wound-healing properties (40-44). Hydrogels are hydro-
philic polymers with a three-dimensional lattice structure 
that swell rapidly in water, become semi-solid, retain large 
amounts of water, and are slightly degraded in the labo-
ratory for some time. In general, the water content of the 
hydrogel matrix is   more than 90%, which provides good 
conditions for maintaining a humid environment (37, 45, 
46). In contrast to other biomaterial varieties, hydrogels 
possess several advantages, including heightened bio-
compatibility, biodegradability, appropriate mechanical 
strength, and a porous structure, among others (47). Owing 
to the hydrogels' characteristics, such as their high water 
content, soft and rubbery consistency, and low surface 
tension with water or biological fluids, these materials are 
anticipated to be viable substitutes for natural tissues (48).

Types of hydrogels

Hydrogels can be classified as natural, synthetic, or a 
combination of both. Hydrogels obtained from natural 
polymers are classified as natural polymer hydrogels (49). 
Natural and synthetic derivative polymers can be conver-
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including textiles, cosmetics, and agriculture (71-73).

An overview of nano-hydrogel synthesis methods

The methods of synthesis of nanohydrogels are very di-
verse. In a general classification, these methods can be 
divided into two categories: chemical and physical. Che-
mical methods are methods in which nanohydrogels are 
formed based on intramolecular bonds, which are usual-
ly of the covalent type. The basis of physical methods is 
also intermolecular bonds of the physical type, such as 
hydrogen bonds and electrostatic forces. In addition to 
the general classification, physical and chemical methods 
also have different classifications. One of the chemical 
methods for the synthesis of nanohydrogels is the use of 
the nano-microemulsion polymerization method. Using 
this method, the size of the synthesized nanohydrogels can 
be well controlled. In this method, polymerization of na-
nohydrogels is performed inside the nano microemulsion 
cores of oil in the aqueous medium, and reverse polyme-
rization, and encapsulation is performed within the nano 
microemulsion cores of water in an oil medium. Other 
chemical methods for the synthesis of nanohydrogels 
include top-down lithographic methods and liposome-
based nanoparticles. In the division of physical methods, 
we come across various methods, including the synthesis 
of self-accumulated nanohydrogels by dual-friendly poly-
mers and the synthesis of self-accumulated nanohydrogels 
by convergent polymers (74-76).

Advantages and limitations of nanohydrogels

To work with nanohydrogels, it is necessary to be well ac-
quainted with the advantages of this type of nanoparticles 
and their limitations to have the best choice for their use 
in therapeutic applications, because sometimes we may 
encounter their side effects during the treatment process. 
One of the significant advantages of nanohydrogels is their 
high biocompatibility and biodegradability. Such particles 
can encapsulate hydrophilic and hydrophobic drugs. The 
polymer networks in nanohydrogels control their loading 
and prevent their untimely release. The inflatability of 
nanohydrogels can be controlled by factors such as tem-
perature, pH, ionic strength, monomer concentration, and 
surface charge density. In addition to these advantages, 
it is necessary to point out some significant limitations. 
Nanohydrogels have certain limitations and capacities in 
the amount of drug-loaded. In addition, sometimes mono-
mers, and surface activators that are used in the structure 
of nanohydrogels are possible Can cause side effects. And 
removing them from the environment faces challenges 
(77-79).

Application of nano hydrogel in wound healing

Burn is one of the most complex injuries, and its treatment 
is challenging. Various factors such as physical, chemical, 
and even radiation can cause it. In addition to different 
treatment methods such as surgery for damaged tissue, 
care of burn wounds is an essential part of treatment. The 
use of silver nanohydrogels due to their antibacterial pro-
perties and resistance to therapeutic drugs can heal wounds 
and They are effective in preventing infection. In fact, sil-
ver nanohydrogels prevent infection of wounds by inac-

ted to hydrogels, from polymers formed by physical entan-
glement to polymers stabilized by covalent crosslinking. 
Hydrogels may be further adapted to integrating chemi-
cally and biologically active identifying moieties, such 
as molecules that respond to stimuli and growth factors 
that enhance their function (50-52). Natural hydrogels, 
such as collagen, silk fibroin, hyaluronic acid, chitosan, 
alginate, and tissue-derived hydrogels, possess unique 
properties, including biocompatibility, biodegradability, 
low cytotoxicity, the potential to transform hydrogels into 
injectable gels, and physiological environment similarity. 
Nevertheless, natural hydrogels exhibit certain limitations, 
such as weak mechanical properties and inconsistency 
across batches, which render them difficult to control. 
Consequently, natural hydrogels are frequently combined 
with synthetic hydrogels to create composite polymers 
and remain a subject of extensive experimentation (53, 
54). Hydrogels are typically founded on the attributes of 
side groups (ionic or nonionic), structural facets (homo or 
copolymer), physical constitution (crystalline, amorphous, 
supermolecular), and receptiveness to a plethora of extrin-
sic stimuli, including temperature and PH. These gels can 
be categorized accordingly (55).

Applications of hydrogels

The adaptability of the hydrogel system has led to its 
wide range of applications in various fields, including bio-
medicine (48). For example, when a hydrogel is formed 
with suitable stiffness and bioactive parts, it modulates 
the behavior of embedded cells (56, 57). Many hydrogels 
can increase the shelf life of drugs due to their adhesive 
and bioadhesive properties, which makes them suitable 
candidates for drug carriers (58). Since the properties of 
hydrogels can be manipulated by a variety of chemical 
methods, their logical design and engineering have led to 
the introduction of new methods for the delivery of small 
molecules (59, 60), proteins (61, 62), and cells (63). As 
tissue engineering scaffolds to guide cell destiny/lineage 
(64), stem cell expansion (65-68) and tissue regeneration 
have been (69, 70).

Nanohydrogels

Depending on the method used to synthesize the hydro-
gels and the type of molecules, used, and the connections 
between the molecules, the hydrogels can be divided into 
two groups: macro hydrogels and nanohydrogels. If the 
hydrogel is formed based on intermolecular bonds, it will 
have macroscopic dimensions; if the hydrogel is formed 
based on intramolecular bonds, nanohydrogels will be 
formed. Nanohydrogels are nanoparticles whose proper-
ties are a combination of the properties of hydrogels and 
nanoparticles. Such nanoparticles have unique properties 
due to their size. These include high availability surface, 
physical and chemical resistance, remarkable durability, 
high load capacity, biocompatibility, and flexibility. In 
recent years the development of intelligent particles has 
been considered. Depending on the type of molecules that 
make them up and their properties, nanohydrogels can be 
used in various fields of drug delivery and release, treat-
ment of diseases such as diabetes, brain tumors, infectious 
diseases, tissue engineering and repair, and gene therapy. 
Such nanoparticles can also be used in various industries, 
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tivating the thiol groups in bacteria and can increase the 
effectiveness of treatment. They are also used for purposes 
related to tissue engineering. Using nanohydrogels and 
combining them with specific cells or proteins, an extra-
cellular matrix can be prepared to repair damaged tissues 
(80-82).

Application of hydrogels in wound healing

Hydrogel dressings produce a moist wound environment, 
facilitating normal healing phases, including granulation 
hyperplasia, epidermal restoration, and dead tissue clea-
rance. The hydrogel's reduced adherence to the hydrated 
wound bed allows the dressing to be removed without 
causing additional injury, considerably lowering pain and 
the risk of infection associated with dressing changes (83, 
84). A hydrogel patch can be used to treat burn wounds in 
any mix of the following ways: (a) it can stop germs from 
growing in the wound, (b) it can deliver drugs that speed 
up the healing process, and (c) it can keep the wound 
moist, which reduces pain (85). In a humid environment, 
the high water content of hydrogels (70-90%) promotes 
granulation and epithelial tissues. The hydrogels' soft 
elasticity allows for simple application and removal fol-
lowing wound healing without causing any harm. Hydro-
gels, which have a soothing and cooling effect, lower the 
temperature of skin wounds. Hydrogels treat chronic dry, 
necrotic, pressure ulcer, and burn wounds (86). Hydrogel 
dressings are appropriate for all four phases of wound hea-
ling except infected wounds and extensive drainage. Non-
irritating hydrogel dressings are metabolite permeable and 
non-reactive with biological tissue. Many studies have 
shown that hydrogel dressings may help cure persistent 
foot ulcers. The issue with hydrogel dressings is that exu-
date buildup encourages bacterial soaking and prolifera-
tion, resulting in a foul odor in the wounds. Furthermore, 
the poor mechanical strength of hydrogels makes them 
difficult to deal with (7). Hydrogel wound dressings and 
creams may aid in wound healing and positively impact 
the end outcome. Intelligent wound hydrogels allow for 
real-time monitoring and the transfer of bioactive com-
pounds (87). Non-adhesion, moisture retention, gas per-
meability, secretion absorption, biocompatibility, and pa-
tient comfort make hydrogels appropriate for healing deep 
wounds. Furthermore, they contain an extracellular matrix 
structure comparable to skin tissue, enable cell migration, 
and may promote partial tissue regeneration. Hydrogels' 
intrinsic qualities may be enhanced by including active 
chemicals like antibiotics, nanoparticles, stem cells, and 
growth hormones, which is a major benefit. Hydrogels that 
change shape in response to stimuli might be used to deli-
ver controlled medications or track healing progress (88, 
89). The dressing must be non-toxic and non-allergenic to 
reach the wound surface to not cause an immune response 
at the wound site. It is also important not to damage the 
wound after removal. It must be resistant to bacteria, allow 
the exchange of gas and water vapor, and be economical 
on a large scale. Therefore, one of the most widely used 
hydrogels is wound healing (1).

Application of hydrogel in wound medicine

Due to the unique properties of hydrogels, such as non-
toxicity, high water content, high oxygen permeability, 

improved biocompatibility, ease of loading and releasing 
drugs, structural diversity, and no immune response at the 
wound site (90, 91), antibiotic-containing hydrogels are 
used in several wound healing conditions. Stem cells can 
be sent to a wound spot with the help of hydrogels. They 
are an excellent option for transportation cars because they 
make stem cells at the cut site live longer. This quality 
comes from the fact that certain hydrogels can help cells 
join and stimulate stem cell activity by keeping regular 
groups together.  The initial growth of stem cells within 
hydrogels in vitro enhances these features, as seen by dis-
placed cells at the wound site for more than 11 days fol-
lowing transplantation (92-96). In addition to transporting 
bioactive substances, hydrogels can also transport heparin, 
hyaluronic acid, and ibuprofen. Hydrogels must have ex-
cellent immunity, antibacterial resistance, loading capaci-
ty, and simple drug release. It must be able to keep its cha-
racteristics for an extended period since certain wounds 
must be treated for an extended period (97-100).

Discussion and conclusion

The usefulness of hydrogels as biomaterials stems from 
their elastic physical qualities, ability to contain tiny mo-
lecules and macromolecular medicines, ability to retain 
water, flexibility, and regulated biodegradability. Hydro-
gels may be made with a variety of characteristics. They 
may be made from biostable, bioabsorbable, and biodegra-
dable polymer matrices with mechanical parts and swel-
ling levels appropriate for the purpose. Because of their 
distinguishing characteristics, they have a potential future 
in drug delivery systems, applied biomedicine, and tissue 
engineering in wound healing.
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