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Introduction

Sepsis, which can cause devastating damage to multiple 
organs and systems, is a systemic inflammatory syndrome 
caused by the invasion of bacteria and other pathogenic 
microorganisms (1). It is characterized by high morbidity 
and mortality (1,2). About 20 million cases occur per year 
and can cause more than 5 million deaths, with a mortality 
rate of about 26 percent (3). Global epidemiological data 
from the Global Intensive Care study showed that among 
patients who developed sepsis on admission or while in 
the ICU, the mortality rate was 25.8% and the hospital 
mortality rate was 35.3% (4,5). Death rates from sepsis 
appear to have declined in recent decades, but incidence 
rates are still rising (5). 

As one of the top ten causes of death, sepsis has caused 
great public health and a huge economic burden to society 
(6). Unfortunately, treatment options for sepsis are still 
limited to supportive care, such as control of the primary 
disease, timely and adequate use of antibiotics, and resus-
citation of dysfunctional organs (6, 7). At present, no spe-
cific drug has been found to cure sepsis, which may be 

due to its complex pathogenesis is still unclear (8). There-
fore, exploring the pathogenesis of sepsis, identifying key 
genes, and searching for effective biological targets have 
become the top priority in the studies of sepsis.

In recent years, the popularity of biomarker-targeted 
therapy for sepsis has gradually increased, however, no 
veritably effective targets have been found (9, 10). Pre-
vious researches have shown that a series of biomarkers, 
such as procalcitonin, c-reactive protein, sTREM-1, and 
suPAR, can play a positive role in clinical diagnosis and 
treatment, but their specificity is low and can only be used 
to distinguish sepsis from other inflammatory diseases (11, 
12). Because sepsis does not possess a gold diagnostic 
standard, it is difficult to realize early clinical diagnosis. 
Thus, the application of biomarkers to diagnose sepsis can 
facilitate individualized accurate treatment.

In addition, systemic immune reaction plays an impor-
tant role in the mechanism of severe sepsis (13). The im-
mune response to sepsis can be separated into two stages: 
early proinflammatory stage and terminal anti-inflamma-
tory stage (13). 

In the early stages, proinflammatory processes domi-
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nate the immune response. Infiltration of inflammatory 
cells such as macrophages, dendritic cells, neutrophils, 
and T cells is an imperative reason for severe immune 
disorders in the early inflammatory stage of sepsis (14). 

Immunosuppression in patients with sepsis refers to 
different cell types and characteristics, including increased 
apoptosis of immune cells, T-cell failure, epigenetic repro-
gramming of cells, and decreased expression of cell sur-
face molecules (15). There is evidence that sepsis-induced 
immunosuppression promotes bacterial growth (15). Be-
sides, sepsis immunosuppression boosts the possibility of 
opportunistic infections and organ dysfunction, as a result, 
the prognosis is poor (16). Since previous researches have 
indicated that immune cell infiltration is vital for the deve-
lopment of sepsis, the detection of prognostic markers and 
the analysis of immune cell infiltration pattern are of great 
importance for improving the prognosis of sepsis patients. 
Therefore, the investigation of immune-related prognos-
tic markers particularly is a substantial focus of sepsis 
research.

Materials and Methods

Attainment and processing of gene data
The gene data of sepsis were downloaded from the 

GEO database according to the keyword “sepsis”. The in-
clusion criteria were as follows: (1) availability of the pa-
tients with sepsis or Healthy from the joint in the datasets; 
(2) more than six specimens in the dataset. One qualified 
dataset with accession number GSE65682 was selected 
(array data, GPL13667). A total of 802 samples, including 
760 sepsis samples and 42 healthy control samples, were 
involved in the data. The information and data of these 
data were all downloaded from public databases, as a re-
sult, patient consent and ethics committee approval were 
unnecessary.

Assessment of immune cell infiltration
In this study, the CIBERSORT algorithm was used to 

clarify the immune cell infiltration of GSE65682. The CI-
BERSORT algorithm is a brilliant approach compared to 
conventional deconvolution means for assessing infiltra-
ting immunity because it can evaluate unspecified data as 
well as noise. Therefore, the CIBERSORT algorithm is an 
outstanding tool for computing the abundance of specia-
lized cells within the mixed matrix.

Establishment and identification of macrophage-re-
lated hub modules using weighted gene co-expression 
network analysis

Different expressed gene variants for the two groups 
were identified. WGCNA package in R software was used 
to establish the weighted gene network of the top 5000 
genes. Then, Pearson’s correlation matrices were ascertai-
ned with the similarity matrix altered from the expression 
of each transcript. The similarity matrix was then altered 
into the adjacency matrix according to amn=|cmn|β (amn 
represents the adjacency between paired genes, cmn repre-
sents Pearson’s correlation coefficient between the paired 
genes, and β represents the soft-power threshold). Next, 
a topological overlap matrix was built from the adjacen-
cy matrix when β=9. The value of β was also used for 
assessing the connectivity features in the co-expression 
network. Besides, we used the average linkage hierarchical 

clustering as well as a dynamic hybrid cutting method to 
construct a dendrogram of the topological overlap matrix 
and classify the genes into different modules, with module 
minimum size cutoff value being 30 and merging identical 
modules threshold being 0.25. Module eigengenes were 
used to make a component analysis of each module. In 
order to search and identify important modules, the asso-
ciations among the infiltration levels of Mφ and the mo-
dules were assessed by Pearson’s tests. The Mφ subset and 
modules with the maximum association coefficients were 
deemed as hub modules.

Data process
The limma package in R software was applied to search 

differentially expressed genes (DEGs) with thresholds of 
|log2FC| ≥ 1 and P < 0.05. In the WGCNA result, genes 
that significance values > 0.3 and module membership 
values > 0.6 were described as hub genes. To identify la-
tent biomarkers, a Venn diagram was used to visualize the 
overlap of DEGs and module genes.

Enrichment analysis of GO and KEGG
The overlapping genes were used for functional analy-

sis based on GO and KEGG database using the R entitled 
org.Hs.eg.db, clusterProfiler, org.Hs.eg.db, and enrichplot 
package in R software. Therefore, GO annotation contains 
three parts: biological process (BP), cellular component 
(CC), and molecular function (MF). The FDR threshold 
was set as <0.05.

Protein-protein interaction (PPI) network analysis
The overlapping genes were sent to the STRING web-

site to generate the interaction diagram of overlapping 
genes. Then, the results were imported into Cytoscape 
(v.3.7.1) to obtain hub genes. Next, in order to identify no-
vel diagnostic markers, ROC curves were made using the 
hub genes in GraphPad Prism 6.01 (La Jolla, CA, USA) to 
explore their diagnostic value.

Statistical Analysis
All bioinformatics analyses in this study were conduc-

ted using R software (v.4.0.2). GraphPad Prism 6.01 was 
used for the ROC analyses. Student T-test was performed 
for continuous variables. Then, P values were adjusted on 
the basis of Benjamini and Hochberg's test. Statistically, 
significance was determined so long as P values < 0.05.

Results

Assessment of the immune infiltration
The infiltration pattern of 22 diverse kinds of immune 

cells was detected using the CIBERSORT algorithm (Fi-
gure 1). The complicated pathogenesis of sepsis can bring 
remarkable alterations in the function of macrophages 
including phenotype reprogramming, macrophage overac-
tivation, and changes in signaling pathways. As a result, 
three different types of macrophages were used for further 
WGCNA analysis. 

Identification of hub modules related to macrophages
A total of the top 5000 genes were sent to build a co-

expression gene network with the aid of the WGCNA pac-
kage. A scale-independent topological network (soft-thres-
holding power nine scale-free R2= 0.9) as well as a mean 
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Macrophage-related DEGs in sepsis samples
A total of 760 sepsis and 42 control samples were in-

volved in this study. Through differential expression ana-
lysis of the dataset, a total of 1370 DEGs including 916 
up-regulated and 454 down-regulated genes were differen-
tially expressed in the disease group. The expressions of 
the DEGs were pictured on a volcano map (Figure 3A). 
The top 10 up-regulated as well as down-regulated genes 
were shown in the heatmap (Figure 3B). 

For analysis of hub genes, the DEGs and the genes 
from the blue and yellow modules were intersected, as 
shown in Fig 3C. The intersected 451 genes were analyzed 
in the next step.

Gene function analysis of GO and KEGG
451 overlapping genes were utilized to implement GO 

and KEGG enrichment analysis. For the GO analysis, 
these genes were enriched in “T cell activation”, “lym-
phocyte differentiation” as well as “T cell differentiation” 
when considering BP (Figure 4A). The top two enriched 
items of CC were “cytoplasmic vesicle lumen” and “ve-
sicle lumen” (Figure 4A). For MF, the top two enriched 
items were “immune receptor activity” as well as “MHC 
protein complex binding” (Figure 4A). KEGG enrich-
ment analysis demonstrated that the top-2 vital pathways 
were “Human T-cell leukemia virus 1 infection” as well as 
“Th17 cell differentiation” (Figure 4B).

connectivity network were generated (Figure 2A). Then, 
we establish dynamic hybrid cutting in order to build a 
hierarchical clustering tree through dividing the dendro-
gram at relevant transition points. That is, each gene was 
set as the leaves, while a bunch of genes with similar ex-
pression patterns were set as branches (Figure 2B). There-
fore, the above-mentioned branches that included similar-
ly expressed genes were deemed as gene modules. Finally, 
a total of 14 gene modules were created after blending 
similar modules (Figure 2C). Among these 14 modules, 
the R2 of the yellow module for Mφ0 was 0.39, while the 
blue module was -0.42. In addition, the R2 of the yellow 
module for Mφ1 was 0.3, while the blue module was -0.4.

Thus, the yellow and blue modules were identified as 
the hub modules (Figure 2C). According to module mem-
bership values > 0.6 and gene significance values > 0.3, 
the blue hub module possessed 526 module genes (Figure 
2D) and the yellow hub module possessed 168 module 
genes (Figure 2E).

Figure 1. The abundance of infiltrated immune cells in GSE65682.

Figure 2. Identification of macrophage-related hub modules. (A) The 
gene mean connectivity with the scale independence index ranges 
from 1 to 20 (β=9). (B) Establishment of gene modules. (C) The asso-
ciations of each module eigengenes with Mφ. The numbers in each 
box represented the correlation coefficients, along with the p values 
shown in brackets. (D-E) Genes in yellow and blue modules. Each dot 
shows a gene. Genes with module membership values >0.6 and gene 
significances >0.3 were deemed as module genes.

Figure 3. Screening of macrophage-related DEGs. (A)Volcano plots 
exhibited DEGs in sepsis and control samples. (B) Heatmap exhibited 
the expressions of the Top 10 up-regulated as well as down-regula-
ted DEGs in sepsis and control. (C)The Venn diagrams of overlap-
ped genes from DEGs and module genes. A total of 451 overlapped 
mRNAs are identified.

Figure 4. Enrichment Analysis of GO and KEGG. (A)The result 
of GO enrichment analyses for the overlap genes. (B) The result of 
KEGG pathway enrichment analyses for the overlap genes.
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Identification of biomarkers for sepsis
The PPI network according to 451 overlapping genes 

was established on the basis of the STRING database. 
The original network (Figure 5A) consisted of 385 middle 
nodes and 2248 edge nodes. Based on cytoHubba, five 
genes (UTP6, RRS1, RRP1B, DDX18, and DDX24) were 
then identified in this cluster and were considered as hub 
genes. 

To further confirm the diagnostic value of these hub 
genes, ROC curves were drawn (Figure 5B). The AUC 
values of these hub genes were all greater than 0.95, of 
which DDX24 (AUC =0.98) had the highest AUC value 
and RRS1 (AUC =0.95) had the minimum AUC value.

Discussion

Currently, various studies increasingly suggest that fin-
ding biomarkers may facilitate the personalized treatment 
for sepsis, for it gives patients access to tailored treatment 
on the basis of their particular characteristics. The speedy 
prosperity of bioinformatics has offered a series of novel 
analytical tools, which can supply technical support for 
identifying biomarkers. These bioinformatic tools, such as 
CIBERSORT, WGCNA, limma, clusterProfiler, and enri-
chplot, have been extensively applied in the study of sep-
sis, particularly playing significant roles in studying mo-
lecular level-related pathway analysis. Therefore, in this 
study, array data from whole blood samples were obtained 
from GSE65682, and 22 distinct cell types of immune in-
filtration in 802 samples were analyzed.

Monocytes/macrophages are one of the most vital par-
ticipants in the pathogenesis of sepsis. It can differentiate 
into various functional phenotypes, after being induced 
by pathogens as well as cytokines, and carry out different 
functions such as phagocytosing pathogenic microor-
ganisms and producing cytokine and chemokine. The 
complicated pathogenesis of sepsis can bring remarkable 
alterations in the function of macrophages including phe-
notype reprogramming, macrophage overactivation, and 
changes in signaling pathways. These alterations further 
confound the pathophysiological status of sepsis and cause 
the intensively decreased curative effects of traditional 
therapy.

Therefore, three distinct kinds of macrophages in sep-
sis samples were used for further WGCNA analysis. Next, 
a total of the top 5000 genes were sent to the established 
gene co-expression network. Finally, a total of 14 modules 
were obtained after merging parallel modules. Among 

these 14 modules, the R2 of the yellow module for Mφ0 
was 0.39, while the blue module was -0.42. In addition, the 
R2 of the yellow module for Mφ1 was 0.3, while the blue 
module was -0.4. Therefore, the yellow and blue modules 
that have the highest connectivity with Mφ were identified 
as hub modules. According to module membership values 
> 0.6 and gene significance values > 0.3, the blue hub mo-
dule possessed 526 hub genes and the yellow hub module 
possessed 168 hub genes.

Through differential expression analysis of the dataset, 
916 up-regulated as well as 454 down-regulated DEGs 
were found in the sepsis group. Then, the DEGs and the hub 
genes from the blue and yellow modules were intersected, 
and 451 intersected genes were obtained. Subsequent GO 
enrichment analysis suggested that 451 overlapping genes 
were enriched in “T cell activation”, “lymphocyte diffe-
rentiation” as well as “T cell differentiation” for biological 
processes. Besides, KEGG enrichment analysis showed 
that “Human T-cell leukemia virus 1 infection” and “Th17 
cell differentiation” were the most enriched pathways.

Sepsis causes a series of changes in both the presenta-
tion and function of immune cells, which promote the pa-
thophysiology of sepsis and lead to immunoparalysis (16). 
Sepsis is initially featured by leukocytosis for 2–4 days, 
with prominent increases in monocyte and neutrophil po-
pulations, which is followed instantly by the condition of 
lymphopenia (17, 18). Lymphocyte populations are excep-
tionally sensitive to apoptosis, and the amount of B cells 
and T cells are distinctly reduced after sepsis onset (19, 
20). It would cause increased mortality if the cell numbers 
of leukocytosis or lymphopenia can not be normalized 
during the stages (20-28). This study suggested that the 
stress induced by sepsis mainly influences the macrophage 
function related to T cell activation and differentiation, and 
lymphocyte differentiation. That is, the 451 overlapping 
genes may be closely related to the prognosis of sepsis.

To further reveal the relationship among these 451 
overlapping genes, the PPI network was performed on the 
STRING website. The original network consisted of 385 
middle nodes and 2248 edge nodes. Using the cytoHubba, 
five genes (UTP6, RRS1, RRP1B, DDX18, and DDX24) 
were defined as hub genes. In addition, ROC curves sug-
gested that these genes all can be used for diagnosing sep-
sis with AUC values greater than 0.95. To our knowledge, 
these five genes were first reported as the biomarkers of 
sepsis in this study. Chao Xu et al. (11) found that MMP9 
as well as C3AR1 were significantly connected with the 
prognosis of sepsis through regulating immune infiltra-
tion. Ye Chen et al. (9) found that CD81 could play impor-
tant roles in both immunological and pathological progres-
sions of sepsis. Therefore, this study enormously added 
to previous studies by finding UTP6, RRS1, RRP1B, 
DDX18, and DDX24 participate in the pathogenetic pro-
cess of sepsis, regulating the activation and differentiation 
of lymphocytes, and could be used for diagnosing sepsis.

Conclusion
This study enormously added to previous studies by 

finding that UTP6, RRS1, RRP1B, DDX18, and DDX24 
participate in the pathogenetic process of sepsis through 
regulating the activation and differentiation of lympho-
cytes. Besides, these five genes could be used for diagno-
sing sepsis.

Figure 5. Identification of hub genes with diagnostic values for sep-
sis. (A)Visualization of the interaction network of genes by Cytos-
cape. (B)ROC curves of DDX24, DDX18, RRP1B, UTP6 and RRS1 
for diagnosing sepsis.
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