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Introduction

The most common type of cancer and a major cause of 
cancer-related death is lung cancer (1). Statistics show that 
in 2018, Nearly 18.4% of deaths caused by cancer were 
caused by lung cancer (2). Studies have concluded that 
lung adenocarcinoma (LUAD) is a highly heterogeneous 
molecular disease and a major pathological subtype of lung 
cancer with a 5-year survival rate p averaging only 15% 
(3,4). Most LUAD patients are diagnosed at an advanced 
stage because the disease is prone to early metastasis, 
which may be an important reason for the high mortality 
rate (5,6). Molecular mechanisms, diagnosis and treatment 
of LUAD have made very important clinical advances, but 
its recurrence rate remains high and survival rates remain 
lower than expected (7). Current applied methods still 
difficult to accurately assess the level of prognosis of pa-
tients with LUAD (8). Therefore, improving the accuracy 
of individual assessment and survival of LUAD patients 

remains a top priority in current y research. The develop-
ment of more efficient and accurate biomarkers to deve-
lop optimal personalized treatment and management plans 
remains a task of urgent research.

Cancer-associated fibroblasts (CAFs) arise and patho-
logize from different origins, the majority of mesenchy-
mal cells originate from and are recruited by cancerous 
cells (9). Tumor cells and stromal components, including 
lymphocytes, neutrophils, plasma cells, endothelial cells, 
and extracellular matrix (ECM), are surrounded by CAFs.  
Fibroblasts consist of CAFs, resting fibroblasts, myofibro-
blasts, and pericytes, and are a source of growth factors, 
chemokines, cytokines, and other regulatory molecules 
associated with cancer growth metastasis, angiogenesis, 
immune effects, and treatment resistance (10). CAFs can 
influence cancer metastasis and angiogenesis by altering 
the ECM and promoting growth factors, and influencing 
the subsequent therapeutic response. CAFs are also im-
portant in regulating tumor immunity, promoting immune 
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the two LUAD independent prognosis factors Moreover, 11 types of immune cells (memory B cells, resting 
natural killer cells (NK cells), Eosinophils, Macrophages M0, CD4 memory resting T cells, CD4 memory 
activated T cells, resting Mast cells, naive B cells, T cells regulatory (Tregs), neutrophils, and plasma cell), and 
18 human leukocyte antigen (HLA) genes were different with the two risk groups. Lastly, the TIDE analysis 
showed differences between the two risk groups for TIDE, T cell dysfunction, and T cell exclusion, PD-L1 
treatment scores. Lastly, Both LUAD and normal samples expressed the 9 model genes differently. A CAF-
related prognostic model was constructed, which may have potential immunotherapy guiding significance for 
LUAD patients.
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escape and resisting cancer immunotherapy. Moreover, 
there is a wide variety of tissue origins, phenotypes, func-
tions, and presences within tumors among CAFs (11-13), 
but their function in the LUAD microenvironment has not 
been fully clarified. Targeted CAFs are a promising can-
cer treatment. However, the future treatment of CAFs in 
LUAD still has a long way to go.

We downloaded RNA-seq data from the Cancer Ge-
nome Atlas Lung Adenocarcinoma (TCGA-LUAD) cohort 
via the Cancer Genome Atlas (TCGA). Besides, CAF-as-
sociated genes were sourced from geneCards and Mole-
cular Signatures Database (MsigDB). This was followed 
by screening for differentially expressed CAF-associated 
genes (DE-CAFGs) in LUAD. We then identified l nine 
genes using least absolute shrinkage and selection opera-
tor (LASSO) regression analysis to assess the risk score 
of LUAD based on their expression as an independent 
prognostic factor. Next, high-risk versus low-risk immune 
infiltration was investigated by using expression data to 
estimate stromal and immune cells in Malignant Tumour 
tissues (ESTIMATE) and by estimating relative subsets 
of RNA transcripts for cell type identification (CIBER-
SORT). Finally, differences in sensitivity against immuno-
therapy between the two groups were assessed by the Tu-
mor Immune Dysfunction and Exclusion (TIDE) method. 
A nine-gene CAFs-associated risk profile associated with 
LUAD included immune checkpoints, immune cells, and 
immunotherapy.

Materials and Methods

Data source
The TCGA-LUAD cohort RNA-seq data from the 

TCGA database contain 535 LUAD tissues and 59 normal 
tissues. After excluding samples with incomplete survival 
information or clinical information, 479 LUAD samples 
were selected for screening prognostic genes and building 
a prognostic model. Moreover, the GSE68465 dataset, 
the external validation set, was sourced from the GEO 
database, including expression profile data of 442 LUAD 
samples with survival information. 4115 CAF-related 
genes were retrieved from Gene Cards with the keyword 
of “cancer-associated fibroblast”, and the screening cri-
teria of “Category = Protein Coding, Relevance score > 
2”. Furthermore, the MsigDB database was further used 
for the search of “fibroblast”, and 279 CAF-related genes 
were acquired.

Screening of differentially expressed CAF-related 
genes in LUAD

Firstly, the differential expression analysis was em-
ployed between the 59 normal samples and 535 LUAD 
samples to screen out the DEGs in LUAD by limma R 
package (version 3.44.3) (14) with statistical significance 
p-value < 0.05 and |Log2FC|>0.5. Then, the screened 
DEGs were further intersected with the 4115 CAF-related 
genes from GeneCards and 279 CAF-related genes from 
MsigDB by VennDiagram to obtain CAF-Related Genes 
(DE-CAFGs) in LUAD, and the result was visualized to 
the Venn diagram. 

Construction and validation of prognosis model based 
on DE-CAFGs

Initially, based on the ratio of 7: 3, 336 and 143 samples 

of the 479 LUAD samples were treated as training set and 
internal validation set. Moreover, after extracting DE-
CAFGs from the training set, the overall survival (OS) and 
other clinic information were combined with the extrac-
ted expression data to further obtain clinical expression 
data of LUAD samples. Next, the risk model was taken 
by univariate Cox analysis and LASSO regression analy-
sis. In detail, univariate Coxmeasured the survival-related 
DE-CAFGs with p<0.05 through survival (version 3.2-3) 
package (15). LASSO logistic regression analysis was 
employed by Glmnet (version 4.1-1) (16) with the setting: 
famil to Cox, to the DE-CAFGs for constructing the risk 
model. Moreover, the risk score of each LUAD patient was 
computed by the risk coefficient obtained by the LASSO 
and the model genes expression levels, with the formula: 
Riskscore = ( ) ( )n

1
coef genei *expression genei∑ , which aimed 

to examine the prognostic value of the risk model. The 
overall survival curves were plotted for LUAD patients 
in both high- and low-risk groups which were nominated 
based on whether their risk scores were greater than the 
median value by Survminer (version 0.4.8). Risk further 
assessed model efficacy using the AUC of ROC curves. 
Next, The ROC curves of 1, 3, 5 years survival time node 
were plotted by the survival ROC package (version 3.1-
12) to the risk model. Moreover, to determine risk model, 
the same evaluation procedures were used to evaluate both 
internal and external validation sets (GSE68465). 

Establishment of a nomogram
To detect the prognosis value of the risk model and 

clinical factors, the correlation analysis was performed 
between clinicopathological characteristics (Age, T, N, 
M, Gender, Smoking-Category, Vital and Stage) of 479 
LUAD samples and the risk score. The differences in sub-
groups of clinicopathological characteristics (M (M0, M1), 
Age (>65 and =< 65), T (T1, T2, T3, T4), Gender (Male, 
Female), Smoking-Category (Non-Smoker, Smoker), N 
(N0, N1, N2, N3), Vital (Alive, Dead)) between the two 
risk groups were examined by Chi-square test. Additio-
nally, the rank-sum test was further utilized to compare 
differences in risk scores among the different subgroups 
of clinicopathological characteristics. Furthermore, the 
K-Msurvival curve was further employed to the clinico-
pathological characteristics in high- or low-risk groups of 
risk score to inspect the survival probabilities between the 
two groups in different subgroups of the clinicopathologi-
cal characteristics.

Next, the univariate Cox analysis was further employed 
to the clinicopathological characteristics and RiskScore of 
479 LUAD samples to investigate the characteristics and 
the risk model. Subsequently, the clinicopathological cha-
racteristics with p<0.05 were considered as the factors for 
the subsequent multivariate Cox independent prognostic 
analysis.

Then, the rms function (version 6.2-0) in the R pac-
kage was employed on the 479 LUAD samples to build 
the nomogram to further predict LUAD patients 1, 3, and 
5-year survival probabilities according to the total score of 
independent factor screened by the Cox analyses, and the 
nomogram was verified by the overall calibration curve. 
In addition, the effectiveness of the risk model and nomo-
gram was further evaluated by Decision Curve Analysis 
(DCA) curves, which aimed to compare the prediction 
accuracies.
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scores of each LUAD sample, and the rank-sum test inves-
tigated the differences of the 4 scores between both risk 
groups. In addition, the chi-square test was employed se-
parately in the two risk groups to compare the numbers of 
people with response and no response to immunotherapy. 

Real-time qPCR
Total RNA was extracted by lysing LUAD samples 

with TRIzol reagent (Life Technologies, CA, USA). quali-
fied RNA was reverse transcribed to cDNA and using the 
2-△△Ct method in the BIO-RAD CFX96 Touch TM PCR 
Detection System (Bio-Rad Laboratories, Inc., USA). All 
experiments were approved by the ethics committee after 
informed consent was obtained from subjects. The primer 
sequences used were as follows (Table 1).

Results

Identifications of DE-CAFGs
Five hundred and thirty-five LUAD samples and sixty-

nine normal samples provided 3709 DEGs, which included 
2163 raised and 1546 dropped genes (Figure 1A). Moreo-
ver, the overlap construe results between 3709 DEGs and 
CAF-related genes showed that 57 DE-CAFGs were final-
ly obtained (Figure 1B) (Supplementary Table 2).

An effective risk model based on 9 model genes was 
developed

The expression data of 57 DE-CAFGs were extracted 
from the training set. After combining with OS clinical in-
formation, a forest map was drawn to visualize the univa-
riate Cox analysis results, as can be seen that 9 DE-CAFGs 
relevant to survival were screened out including SHCBP1, 
CCNA2, AKAP12, CCNB1, GALNT3, SCGB1A1, CPS1, 
CDC6, and CXCL13. Besides, SCGB1A1 and CXCL13 
were the protection factors (HR < 1) and the rest 7 of them 
were risk factors (HR > 1) (Figure 2A). The LASSO re-
gression analysis of 9 DE-CAFGs relevant to survival re-
sults suggested these 9 genes were screened out as model 
genes when the cross-validation error was lowest (lambda.
min = 0.00355) (Figure 2B) (Table 2). The risk score of the 
9 model genes = 0.34891×SHCBP1 + 0.16841×CCNA2 
+ 0.15019×AKAP12 + 0.24073×CCNB1 + 
0.20254×GALNT3 + 0.04754×CPS1 + (-0.00943)×SCG-
B1A1 + (-0.47551)×CDC6 + (-0.11165)×CXCL13.Using 
the risk score, the risk curve revealed that high-risk pa-
tients had poor survival rates (Figure 2C). The K-M curve 
illustrated that the low-risk patients had a higher survival 
probability (p<0.0001) (Figure 2D). Furthermore, one-

Effects of risk model on immune heterogeneity
CIBERSORT (version 1.03) (17) analyzes the immune 

cell infiltration landscape of 479 LUAD samples. In the 
current study, the LM22 signature computes the corres-
ponding proportion of each type of immune cell in each 
LUAD sample. In addition, the estimate package (ver-
sion 1.0.13) was performed on the 479 LUAD samples to 
detect the immune infiltration differences. The immune 
infiltration of both immune and stromal cells in a tumor 
sample can be obtained by the ESTIMATE algorithm, 
which would be presented as stromal scores, immune 
scores, and ESTIMATE composite scores. Then, Spear-
man analysis was employed to discover the correlations in 
risk scores with stromal scores, immune scores, and ES-
TIMATE composite scores. Furthermore, the proportion 
of CAF in each LUAD sample can be obtained by McP-
counter, xCell, TIDE and EPIC, and Spearman was further 
applied to distinguish the relation between risk score and 
CAF proportion.

Moreover, the 19 human leukocyte antigen (HLA) 
genes obtained from the publication of Yue et al. (18), 
were extracted from the LUAD expression matrix. The 22 
cancer-associated fibroblasts (CAF) markers were acqui-
red from the research of Zheng et al. (19), and 8 chemo-
kines/cytokines were obtained based on Chen et al. (20) 
(Supplementary Table 1). The expression differences of 
19 HLA genes, 22 CAF markers, and 8 chemokine/cyto-
kine between the two risk groups were analyzed through 
rank-sum test. Risk model genes were correlated with 
HLA genes, CAF markers, and chemokine/cytokine levels 
using Spearman analysis.

Analyses of immunotherapy response
The TIDE method was used to determine whether 

immunotherapy sensitivity differed between the two risk 
groups. TIDE was used to obtain the TIDE, T cell dysfunc-
tion, T cell exclusion, and PD-L1 (AKA CD274) treatment 

Figure 1. DE-CAFGs in LUAD identified. (A) DEGs between LUAD 
and normal samples are plotted as a volcano. (B)Venn plot of the 57 
DE-CAFGs.

Primer Sequence
SHCBP1 F GAGCCTGGTGAGGAAGAAAGAG
SHCBP1 R CAATGGAGTCAGCAATGGAGAA
CCNA2 F CCATTCATGTGGATGAAGCAGAA
CCNA2 R CCATTGGATAATCAAGAGGGACC
AKAP12 F CATGAGGAGAATGAGGTCGC
AKAP12 R AAACTGGAAGGTGCTGGAGG
CCNB1 F TTTAAACTTTGGTCTGGGTCGG
CCNB1 R CTGCTGCAATTTGAGAAGGAGG
GALNT3 F ATACAGCAGCAGAATTGAAGCC
GALNT3 R TGCAGGTGAAGAATAGAGCACA
CPS1 F GTCTACTTTCTTCCCATCACCCC
CPS1 R CATATTCCTTGAGCACACCTCTC
CDC6 F GGAGATGTTCGCAAAGCACTG
CDC6 R AACCCTCTTGGGAATCAGAGG
CXCL13 F GCTTGAGGTGTAGATGTGTCC
CXCL13 R CCCACGGGGCAAGATTTGAA
SCGB1A1 F GATCAAGACATGAGGGAGGCAG
SCGB1A1 R ACACAGTGAGCTTTGGGCTATT
GAPDH F CCCATCACCATCTTCCAGG
GAPDH R CATCACGCCACAGTTTCCC

Table 1. Primers for qPCR.
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, three-, and five-year ROC curves all had AUCs better 
than 0.6, revealing that the risk model was efficient (Fi-
gure 2E). Moreover, both internal and external validation 
(GSE68465) sets all showed consistent results with that of 
the training set (Figure 2F - 2K). 

Clinical correlation analysis
The Chi-square test result suggested there were diffe-

rences in the T, N, M, Gender, Vital and Stage between the 
two risk groups, except for Smoking-Category (p = 0.46) 

and Age (p = 0.051) (Table 3). Furthermore, the rank-sum 
test results demonstrated the risk score differences among 
the subgroups of T, N, M, Stage, Age, and Gender groups 
were significant (Figure 3A). Moreover, the stratified sur-
vival analysis of the clinical factors showed survival dif-
ferences between the risk groups among the subgroups in 
M (M0), Age, T (T2), Gender, Smoking-Category, N (N0, 
N2), and Stage (StageI/StageIII/StageIV) (Figure 3B).

Prediction of the nomogram was accurate
The univariate Cox independent prognostic analysis 

result illustrated T, N, M, stage, and risk score could be 
considered as prognosis factors (p<0.05) (Figure 4A). 
Next, the Multivariate Cox independent prognostic revea-
led the stage (p = 0.037), and the independent prognos-
tic element for LUAD is the risk score (p<0.001), and 
LUAD risk models constructed in this study were found 
to be reliable independent prognostic elements (Figure 

Gene Coef Exp(coef) Se(coef) Z P
SHCBP1 0.34891 1.41752 0.21163 1.649 0.0992
CCNA2 0.16841 1.18342 0.20016 0.841 0.4001
AKAP12 0.15019 1.16206 0.07511 2 0.0455
CCNB1 0.24073 1.27218 0.19392 1.241 0.2145
GALNT3 0.20254 1.2245 0.08258 2.453 0.0142
SCGB1A1 -0.00943 0.99061 0.03051 -0.309 0.7573
CPS1 0.04754 1.04868 0.03419 1.39 0.1645
CDC6 -0.47551 0.62157 0.18477 -2.574 0.0101
CXCL13 -0.11165 0.89436 0.05075 -2.2 0.0278

Table 2. Risk model gene risk coefficient.

Figure 2. CAF-related gene prognostic models are evaluated and 
validated. (A) Univariate Cox regression forest plot. (B)The relati-
vity between coefficients of genes and Lamba. Patient survival status, 
risk scores, and expression patterns of risk genes in the (C) training 
and (F) internal validation cohorts. The (D) training and (G) internal 
validation cohorts for different groups are analyzed by Kaplan-Meier 
survival. (I) Model gene expression heat maps, risk curves, and scat-
ter plots (J) Kaplan-Meier survival analysis of lung adenocarcinoma 
patients in the GSE68465.This nine-gene signature for overall survi-
val was analyzed using time-dependent ROC curves (E) training, (H) 
external validation and (K) GSE68465 set.

 

 

   

  

 

 
  

 

Figure 3. Clinical factors and risk model association analysis. (A) 
This association analysis between different clinical subgroups and 
risk score. (B) Survival analysis by Kaplan-Meier for each subgroup.
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4B). Moreover, the C-index of the nomogram stage and 
risk score was 0.7008, and the slopes of patients overall 
survival in one-year, three-year and five-year were close to 
1, revealing that the prediction was exact (Figure 4C, 4D). 
Moreover, DCA curves also suggest that the net benefit 
of the nomogram was greater than the risk model (Figure 
4E).

Correlation between risk model and tumor microenvi-
ronment

CIBERSORT was used to investigate the immune cells 
in 431 LUAD samples (HIGH = 219, LOW = 212) after 
eliminating samples with p>0.05 (Figure 5A). It can be 

found that 22 kinds of immune cells negatively regulate 
each other, and 11 kinds of immune cells (eosinophils, 
B cell memory, macrophage M0, B cell immature, T cell 
CD4 memory resting, plasma cells, NK cell resting, T cell 
regulation (Treg), T cell CD4 memory activation, mast cell 

Characteristics Total
Risk

P-value
High Low

Age (year)

mean (SD)
65.3 (±10.1) 64.5 (±10.5) 66.1 (±9.5) 0.051

Gender
female 260 (54.3%) 111 (46.4%) 149 (62.1%)

<0.001
male 219 (45.7%) 128 (53.6%) 91 (37.9%)

Vital
alive 302 (63.0%) 127 (53.1%) 175 (72.9%)

<0.001
dead 177 (37.0%) 112 (46.9%) 65 (27.1%)

Stage

I 259 (54.1%) 104 (43.5%) 155 (64.6%)

<0.001
II 117 (24.4%) 67 (28.0%) 50 (20.8%)
III 78 (16.3%) 50 (20.9%) 28 (11.7%)
IV 25 (5.2%) 18 (7.5%) 7 (2.9%)

M Stage
M0 316 (92.9%) 164 (90.1%) 152 (96.2%)

0.034
M1 24 (7.1%) 18 (9.9%) 6 (3.8%)

N Stage

N0 311 (66.2%) 136 (57.6%) 175 (74.8%)

<0.001
N1 90 (19.1%) 56 (23.7%) 34 (14.5%)
N2 67 (14.3%) 43 (18.2%) 24 (10.3%)
N3 2 (0.4%) 1 (0.4%) 1 (0.4%)

Smoking Category
non-smoker 58 (21.7%) 32 (23.7%) 26 (19.7%)

0.46
smoker 209 (78.3%) 103 (76.3%) 106 (80.3%)

T Stage

T1 164 (34.5%) 57 (23.9%) 107 (45.0%)

<0.001
T2 251 (52.7%) 142 (59.7%) 109 (45.8%)
T3 44 (9.2%) 26 (10.9%) 18 (7.6%)
T4 17 (3.6%) 13 (5.5%) 4 (1.7%)

Table 3. Risk and clinical data.

Figure 4. Nomogram construction and calibration plot validations. 
(A) Univariate and (B) Multivariate Cox independent prognostic as-
say. (C) Nomogram based on age and stage for 1-, 3- and 5-year OS 
predictions. (D) Nomogram calibration curves for predicting 1-, 3-, 
and 5-year survival. (E) The DCA curve analysis of risk model and 
nomogram.

 

 

 

Figure 5. Risk models and immune microenvironments. (A) In each 
LUAD sample, 22 immune cells are present. (B) The correlation of 22 
kinds of immune cells. (C) Between the CAFs subgroups, 22 immune 
cells were infiltrated. (D) ESTIMATE and Stromal Scores are corre-
lated with risk scores. (E) Spearman’s association assay between the 
CAF risk score and multi-estimated CAF infiltrations. (F) HLA gene 
expression profiles of low and high-risk groups and the association 
between risk model genes and HLA-associated genes. (G) Boxplot 
of CAF markers expression in the two groups. (H) The heat map of 
CAF markers expression. (I) Association analysis of CAF markers 
with risk model genes. (J) Boxplot of chemokine/cytokine expression 
in high and low-risk groups and the association between risk model 
genes and chemokine/cytokine expression.
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quiescence, and neutrophils) were different between the 2 
risk groups (Fig. 5B, 5C). Then, In the Spearman analysis, 
EPIC, xCell, and McP-counter CAF ratios showed a cor-
relation with risk score (p<0.05) (Figure 5E). 

In addition, the HLA gene revealed 18 HLA genes 
(DRB5, F, C, DOB, E, DQA1, DRB1, DPB1, DMA, A, 
DQB2, DQB1, DPA1, B, DMB, DOA, DRA, DQA2) si-
gnificantly differentially expressed between the two risk 
groups, and the risk model genes were strongly correla-
ted with the 19 HLA genes (Figure 5F). 10 CAF markers 
(COL11A1, MFAP5, COL3A1, FOXF1, SPARC, FN1, 
COL1A1, FAP, OGN, and MMP11) expressed differen-
tially between the two groups (Figure 5G, 5H), and CAF 
markers showed strong positive/negative correlation with 
risk model genes (Figure 5I). Besides, the analysis of 8 
chemokines/cytokines illustrated that the expressions 
of 3 of TNF, CSF1 and IL13 were significantly different 
between risk groups, and there were strongly negative cor-
relations between risk model genes and chemokines/cyto-
kines (Figure 5J).

Analysis of immunotherapy differences
The variation in sensitivity of immunotherapy in the 

two groups was assessed using TIDE. It can be found that 
T cell dysfunction, PD-L1 and T cell excepted, treatment 
scores all showed variation between the two risk groups, 
and the TIDE score was greater in a high-risk group, 
which indicated the efficacy of immune checkpoint bloc-
king (ICB) therapy was poor in the high-risk group (Figure 
6A). Additionally, the chi-square test result demonstrated 

that there were differences in the numbers of nonrespon-
ders and responders between the risk groups, which were 
significantly more responders in this low-risk group (Fi-
gure 6B). 

RT-qPCR validation of 9 model genes
For further verification of the 9 model genes' expression 

levels (SHCBP1, CCNA2, AKAP12, CCNB1, GALNT3, 
SCGB1A1, CPS1, CDC6, CXCL13), RT-qPCR was per-
formed in 5 pairs of LUAD samples. It can be found that 
the 9 model genes were different between the LUAD and 
the normal samples (all P<0.05). Consistent with TCGA 
results, the AKAP12 and SCGB1A1 were significantly 
lower in LUAD samples, and all the rest 7 model genes 
(CPS1, CXCL13, CCNB1, CCNA2, CDC6, SHCBP1, 
and GALNT3) were raised in LUAD in comparison with 
normal samples. Therefore, these 9 model genes could 
be considered as the prognosis genes of LUAD (Table 4, 
Figure 7).

Discussion

LUAD is a type of non-small cell lung cancer (NS-
CLC) that is characterized by high heterogeneity and high 

NC Ca T, df value P value
CPS1 1.0452±0.0284 4.0835±2.0552 t=3.273 df=4 0.0307
AKAP12 1.0003±0.0005 0.4090±0.0581 t=22.75 df=4 <0.0001
CXCL13 1.0008±0.0013 4.1521±0.2707 t=25.93 df=4 <0.0001
CCNB1 1.0008±0.0007 4.9066±1.2854 t=6.794 df=4 0.0025
CCNA2 1.0023±0.0026 5.3770±1.5139 t=6.461 df=4 0.003
CDC6 1.0213±0.0315 3.7492±1.0503 t=5.888 df=4 0.0042
SHCBP1 1.0063±0.0107 2.9231±0.5386 t=8.105 df=4 0.0013
GALNT3 1.0031±0.0027 5.6367±1.1312 t=9.173 df=4 0.0008
SCGB1A1 1.0037±0.0018 0.4173±0.1554 t=8.469 df=2 0.0011

Table 4. Expression levels of 9 model genes by RT-qPCR.

Figure 6. Discrepancy in immunotherapy between high and low-risk 
groups. (A) The score of T-cell dysfunction, TIDE, T-cell exclusion 
and PD-L1 treatment in the two groups. (B) Comparison of patients 
with or without immunotherapy response. (C) Immunotherapy res-
ponse prediction (anti-PD- 1 and anti-CTLA4) based on the Submap 
algorithms.

 

 

 

Figure 7. RT-qPCR validation of 9 model genes. Expression levels of 
the 9 model genes by RT-qPCR between the LUAD and the normal 
samples.
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malignancy. (3,21). Due to the complex characteristics 
of LUAD, efficient prediction of prognosis in patients 
with LUAD remains challenging (22). Lately, studies 
targeting the regulation of the immune system by CAFs 
have received increasing attention. Numerous researches 
demonstrated that CAFsz is important in the progress of 
cancer (11). Hence, novel CAFs have become a hot point 
in the reaml of cancer and are important biomarkers and 
key to targeted therapies.

In this research, the LUAD dataset from TCGA data-
bases, and CAF-associated genes, we first screened out 57 
DE-CAFGs. The univariate Cox selected 9 DE-CAFGs. 
Next, a signature of 9 DE-CAFGs predicting OS in 
LUAD patients was used LASSO Cox regression analy-
sis. Based on our findings, nine CAFs-related genes were 
possibly correlated with survival outcomes in LUAD. 
Furthermore, 9 CAFs-related genes (SHCBP1, CCNA2, 
AKAP12, CCNB1, GALNT3, SCGB1A1, CPS1, CDC6, 
and CXCL13) were selected as prognostic biomarkers. 
Among them, CXCL13 and SCGB1A1 are favorable 
prognostic genes in LUAD patients, while the rest of the 
seven are adverse prognostic genes. Numerous types of 
cancer are overexpressed with SHCSH2-binding protein 
1 (SHCBP1) (23). The loss of SHCBP1 in hepatocellu-
lar carcinoma (HCC) cells inhibits cell proliferation and 
increases apoptosis (24). As a result of SHCBP1, breast 
cancer spreads and apoptosis occurs (25). Consistent with 
our study, according to Wang et al. (23) SHCBP1 in can-
cerous lungs is significantly higher than in normal lung 
tissues, suggesting that SHCBP1 could be a candidate lung 
cancer oncogene. The CCNA2 gene is located on chromo-
some 4 which belongs to the highly conserved cyclin fami-
ly. Several studies have demonstrated that this gene may 
enhance cancer aggressiveness, relapses, and metastases 
and chemoresistance (26). As reported by Zhou et al. (27) 
CCNA2 is correlated with immunity therapy efficiency 
in LUAD and can be used as a diagnostic and prognostic 
biomarker. As cancer progresses, AKAP12 is downregu-
lated, often due to promoter hypermethylation or its locus 
at 6q24-25.2 is lost (28,29). In lung cancer tumors, the 
AKAP12α promoter is more frequently methylated and is 
associated with poor prognosis (29,30). A mucin-like O-
linked protein including in the proliferation, migration and 
adhesion of tumor cells is glycosylated by GalNAc-T3. 
By reducing the production of CXCL1, GALNT3 inhibits 
the development of lung cancer by blocking the develop-
ment of myeloid-derived suppressor cells (MDSCs), re-
sulting decrease in angiogenesis (31). In different cancers, 
GALNT3 can both promote and inhibit tumor progression. 
It seems even this is controversial since one study found 
that GALNT3 promoted pancreatic cancer cell growth, but 
others found that GALNT3 suppressed it (32), and ano-
ther study showed that GALNT3 suppresses pancreatic 
cancer (33). GALNT3 is also thought to promote colon 
cancer (34). Our study suggested that GALNT3 is a tumor-
suppressing gene in LUAD. We found that GALNT3 is 
upregulated in LUAD and related to OS in patients with 
LUAD. PCR results also confirmed that GALNT3 was 
overexpressed in LUAD tissues than normal tissue. Fur-
thermore, a urea cycle, CPS1 is a rate-limiting enzyme 
that promotes proliferation and the growth of tumors (35). 
CPS1 promotes tumors in LUAD, and high CPS1 has a 
worse outlook (36). NSCLC driven by epidermal growth 
factor receptor (EGFR) relies on the CPS1-mediated urea 

cycle for growth. It is possible to further reduce the proli-
feration of NSCLC (non-small cell lung cancer) by inhibi-
ting EGFR once CPS1 is knocked down (37).

Recently, the research on immune cell infiltration in 
tumors has been increasing attention. The infiltration of 
immune cells is thought to contribute to the progression 
of LUAD and colorectal cancer (CRC) and the response 
to immunotherapy (38,39). There is increasing evidence 
that tumor immune infiltration levels are related to can-
cer patient prognosis. There is a relation between immune 
infiltrating cells and prognosis among LUAD with high- 
and low-risk scores. In the current study, we know the 
proportions of 11 immune cells (memory B cells, Eosi-
nophils, naive B cells, Macrophages M0, CD4 memory 
resting T cells, T cells regulatory (Tregs), Plasma cells, 
CD4 memory activated T cells, resting NK cells, resting 
Mast cells, and Neutrophils) were significantly different 
between 2 risk groups. Cytotoxic T lymphocytes (CTLs) 
are stimulated in tumors by cancer immunotherapy and 
activate tumor-specific CTLs in lymphoid organs to esta-
blish effective and durable antitumor immunity. CTLs with 
CD4+ T cells are more effective at fighting tumors (40). As 
an important innate immune sentinel, mast cells improve 
the immune response mediated by T cells, however, other 
examples demonstrate the ability to inhibit immune res-
ponses (41,42). Mast cell number in TME is found to be 
related to cancer development and better patient survival 
due to their functional plasticity (42). The infiltration of 
mast cells in tumorislets is independent of the stage of the 
cancer in NSCLC (43). Further study showed that tumor 
infiltration by macrophages was associated with tumor 
lymphatic angiogenesis and worse prognosis in LUAD 
(44). Kawai et al. (45) mentioned that macrophage infil-
tration could indicate the prognosis of patients with stage 
IV NSCLC. As a result, the diversity in survival outcomes 
between risk groups may be due to the infiltration of im-
mune cells in TME. According to these results, immuno-
therapy might have better results for patients within the 
CAFs low-risk group.

Some researches have shown that CAFs are negatively 
related to LUAD patient prognoses, suggesting that CAFs 
have a vital role in tumor progression (46,47). The secre-
tion of cytokines and chemokines by CAFs contributes to 
tumor development and resistance to treatment. Pechkovs-
ky et al. (48) investigated how CAFs are spontaneously 
expressed in the lung parenchyma using patient-derived 
samples from the proximal bronchus and distal lung pa-
renchyma of normal peopleα- SMA, implying the role of 
α-SMA in the development of lung cancer. Simultaneous-
ly, it was found that OPN was overexpressed in senescent 
fibroblasts which were the important mediators to promote 
tumor growth (48,49). According to Richardson et al. (50) 
vimentin maror functions through CAFs but not through 
cancer cells. Invasion and metastasis of lung adenocarci-
nomas were promoted by vimentin expressed in CAFs. By 
secretion of SRGN, Through CD44/NF-B/claudin-1 axis 
recruitment, CAFs improved the EMT of lung cancer cells. 
Additionally, an article mentioned that CAF-conditioned 
medium increased vascular Cell adhesion molecule-1 
(VCAM-1) in comparison with conditioned medium from 
normal lung fibroblasts (NLF), thereby increasing the 
proliferation and metastasis in lung cancer cells (51). By 
activating AKT and MAPK signaling pathways, VCAM-1 
secreted from CAFs promoted tumor growth and invasion 
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reversibly. CAFs can activate the pi3k/akt/mtor pathway 
in non-small cell lung cancer cells through interleukin-22 
and significantly promote the migration and invasion of 
tumor cells (52).

Several pathways enriched in tumors, including epi-
thelial-mesenchymal transformation, were identified (53), 
hypoxia (54), inflammatory response (55), interferon-
gamma response (56) and NFkB-mediated TNFα signal 
transduction (57) which were correlated to the function 
of CAFs. An enhanced tumor-promoting ability of CAFs 
was observed in hypoxia microenvironments. The CAIX 
index represents hypoxia, which is associated with poor 
prognosis in patients with lung adenocarcinoma (58). Can-
cer cells grew aggressively when CAIX (+) CAFs attrac-
ted tumor-promoting stromal cells, for instance, CD204 
(+) tumor-associated macrophages (TAMs) and podopla-
nin (+) CAFs. The CAFs in lung adenocarcinoma were 
upregulated by chemotherapy, radiotherapy, and hypoxia 
stress and the NF-B/BCL-XL pathway was activated by 
the compound, resulting in chemoresistance. By reducing 
cellular ROS levels, GSH increases resistance to death 
stimuli. In LUAD, CAFs expressed GGT5 predominantly 
and increased intracellular GSH and reduced ROS levels in 
lung cancer cells. Low expression of GGT5 promotes the 
sensitivity of lung cancer cells to paclitaxel and cisplatin. 
Another study found that CAFs in lung adenocarcinoma 
after cisplatin treatment conferred drug resistance to lung 
cancer cells by up-regulating interleukin-11 and activating 
the STAT3 antiapoptotic pathway. The researchers also 
suggested that patients with high levels of interleukin-11 
receptor expression had poor response to cisplatin (59).

In addition to promoting angiogenesis and recruiting 
immunosuppressive cells into the TME, CAFs can secrete 
several growth factors and proinflammatory cytokines 
(60,61). An immune-suppressed status was more likely to 
be predicted in high-risk groups. There was a lower infil-
tration of immune cells and high expression of HLA-I and 
HLA-II in the high-risk group. It has been found that CAFs 
in lung cancer tissue can recruit granulocyte-like myeloid 
suppressor cells into the tumor by secreting chemokines 
such as CXCL1, cxcl2, CXCL5 and CCL3 to form an im-
munosuppressive tumor microenvironment (62). Cancer-
infiltrating immune cells (TIICs) were induced to differen-
tiate into immune-suppressive cells by CAFs. TMEs may 
be immunosuppressive when CAFs polarize macrophages 
to M2 macrophages. MDSCs activated by CAFs suppress 
CD8+ T cell proliferation and IFNy production, creating 
an immunosuppressive tumor microenvironment. A recent 
study pointed out that CAFs of lung adenocarcinoma can 
directly interact with activated CD8 + T cells through an-
tigen presentation and induce T cell death through binding 
of PD-L2 and Fas ligands. Furthermore, T cells contai-
ning antigens were significantly impaired in their ability 
to kill tumor cells when they were regulated by antigen-
loaded CAFs, it appears that CAFs can enhance tumor 
cell viability by causing tumor-specific T cells to become 
dysfunctional and die (63). Past studies have proven that 
CAFs promote the recruitment and differentiation of Treg 
cells by recruiting and balancing CD4+ effector T cell 
subsets (Th1 and Th2). Immune cells that attack tumors 
innately (NK cells). Researchers found that CAFs reduced 
the proliferation rate, cytotoxic capacity, and anti-tumor 
activity of NK cells in vitro, extensive degranulation, as 
well as promoting the expression of inhibitory receptors 

while inhibiting stimulatory receptors (64). It appears that 
CAFs and their secreted factors promote the progression 
of LUAD by orchestrating with immune cells within the 
TME.

TIDE predicts the likelihood of tumor immune escape 
positively. The results indicate that ICIs are less beneficial 
for patients with higher TIDE scores. In those research, 
CAFs with low risk had lower TIDE scores and T cell ex-
clusion scores, while those with high risk had higher TIDE 
and T cell dysfunction scores. Thus, patients at high risk of 
CAFs may suffer immune escape because of dysfunctional 
T cells and respond poorly to ICIs, in contrast, patients 
at low risk of CAFs may benefit more from ICIs. Low-
risk patients are more effective with immunotherapy. The 
results show that the nine CAFs-related genes can provide 
a novel and reliable method to estimate a patient's pro-
gnosis by calculating a risk score and clinical response to 
immunotherapy for LUAD.CAFs also altered the expres-
sion of immune checkpoints, such as PD-L1, in addition to 
regulating immunity directly. PD-1 and PD-L1 help tumor 
cells survive by evading T-cell recognition (65). PD-L1 or 
PD1 receptor targeting has been shown to be available in 
treating NSCLC (66). CAFs secrete CXCL2, which signi-
ficantly increases PD-L1 expression in lung adenocarcino-
mas, accelerating tumor progression (67). Consequently, 
CAFs can affect lung cancer patients' immune responses 
and targeting CAFs could promote immunotherapy's effi-
cacy.

Until now, no study has explored the clinical features 
of CAFs in LUAD and established a prognostic signature, 
using CAFs to predict LUAD survival outcomes and im-
munotherapy effectiveness. Furthermore, nine CAF-rela-
ted genes should be explored in depth as prognostic mar-
kers. Due to LUAD's complex and diverse immune envi-
ronment, CAFs play different roles in different patients. 
Therefore, further clarification is needed regarding CAFs' 
effects on tumor cells and immune cells.

While our study has some limitations, one of the most 
important is that it was mainly based on bioinformatics 
analysis. Further systematic experiments are needed to va-
lidate our statements since there were few experiments to 
confirm our findings. In addition, RT-qPCR is performed 
only to detect differences in expression levels between 
LUAD samples and controls, which is urgent to explore 
the functions of the nine genes in LUAD.

Conclusions
Increased infiltration of CAFs in LUAD is clearly asso-

ciated with advancing age (age> 65), gender, M0, N0, N2, 
T2, Stage (I, III, IV), Smoking Category, score of stro-
mal, immune and ESTIMATE and patient prognosis. Pro-
gnostic models about nine CAFs-related genes have wide 
application. Prognosis and immunotherapy response for 
LUAD patients can be predicted using the risk model.
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