
44

Introduction

Ankylosing spondylitis (AS) is a family of spondy-
loarthropathies characterized by radiographic sacroiliitis 
often accompanied by back pain and joint stiffness. Its pa-
thological mechanism involves autoimmunity, inflamma-
tion, bone remodeling, and ankylosis (1). AS has parado-
xical clinical manifestations characterized by pathological 
osteogenesis and osteoporosis. The clinical symptoms of 
this disease include spinal stiffness and decreased range 
of motion caused by spinal inflammation, structural da-
mage, and bone remodeling (2). Inflammation also plays 
a crucial role in abnormal bone metabolism. Relevant stu-
dies have reported persistent inflammatory infiltration in 
the spinal joints of patients with AS (including long-term 
patients) (3), with osteoclasts being the key cell type me-
diating inflammatory bone loss (4). The exact mechanism 
of osteogenesis remains poorly understood. However, it 
involves inflammation and spontaneous osteogenesis (5). 

Non-steroidal anti-inflammatory drugs are gene-
rally used to alleviate symptoms of patients with AS by 
regulating bone metabolism and reducing prostaglandin 
synthesis through cyclooxygenase activity inhibition (6); 
however, studies have found that non-steroidal anti-in-
flammatory drugs negatively regulate fracture healing 
(7,8). In contrast, biological agents are the primary the-
rapeutic modalities for treating AS. Anti-TNF-α therapy 
is a long-term and stable biological agent (9); however, 
studies documenting its effect on alleviating radiographic 

progression are lacking. Another biological drug, anti-
IL-17, which is known to produce immunosuppression 
and requires constant monitoring for infection, requires 
more clinical research to demonstrate its efficacy (10-12). 
Although AS symptoms can be alleviated by non-steroidal 
anti-inflammatory drugs and biological agents, the disease 
remains incurable (13). Therefore, novel drug therapies 
that can treat AS are needed.

Isofraxidin is a traditional Chinese herbal extract from 
Acanthopanax senticosus and has been used in Chinese tra-
ditional medicine for treating rheumatism and joint pain. 
Isofraxidin modulates several key inflammatory factors, 
including inducible nitric oxide lyase (iNOS), cyclooxy-
genase-2 (COX-2), prostaglandin E2 (PGE2), and tumor 
necrosis factor-α (TNF-α), and can suppress proliferation 
and induce apoptosis in human lung cancer cells, with mi-
nimal side effects (14). Collectively, isofraxidin is a safe 
and effective therapeutic agent for treating AS, a disease 
characterized by concurrent bone erosion and pathologi-
cal osteogenesis, and involves TNF-α (15), COX-2, and 
PEG2 pathway (16) activation. Therefore, this drug has 
various therapeutic properties, including anti-inflamma-
tory (17-23), anti-cancer (14,24,25), heart protective (26), 
anti-oxidant (27), and anti-osteoclastogenic (28) effects. 
However, most studies have focused on its role in sup-
pressing inflammation and treating cancer. Besides that, 
previous research on the use of traditional Chinese medi-
cine has confirmed that isofraxidin has anti-inflammatory 
and anti-osteoclastogenic properties and that it shows low 
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toxicity, which supports its use in the treatment of inflam-
mation, osteoporosis, and osteogenesis associated with 
AS. Thus, isofraxidin is thought to suppress AS inflam-
mation, relieve bone erosion, and inhibit osteogenic proli-
feration and differentiation with minimal toxicity. Despite 
this information, its effect on osteogenesis remains poorly 
understood.

Previous studies used MC3T3-E1 cells, a precursor 
osteoblast, to create an AS model due to its similarity with 
human osteogenesis (29,30). Herein, MC3T3-E1 subclone 
14 cells were used to mimic pro-osteoblast proliferation, 
morphological differentiation to osteoblasts, and the os-
teogenic mineralization process. Furthermore, we inves-
tigated the effect of isofraxidin on the proliferation and 
differentiation of MC3T3-E1 subclone 14 cells.

Materials and Methods

Cell culture and osteogenic induction
Isofraxidin (structural formula in Figure 1) was ob-

tained from Solarbio (China), andMC3T3-E1 subclone 
14 cells were purchased from the Chinese Academy of 
Cell Sciences, which cultured in the Minimum Essential 
Medium Alpha (MEM-α) (VivaCell, China), containing 
10% fetal bovine serum (VivaCell, China) and 5% CO2, 
at 37°C for 24 h. The culture medium was then changed 
to MEM-α containing 5 mM β-glycerophosphate (Sigma, 
Merck KGaA Germany) and 50 µg/mL vitamin C (Sigma, 
Merck KGaA) to induce osteogenesis.

MTT assay
MTT (Sangon Biotech, China) was dissolved in PBS at 

a concentration of 5 mg/mL. Cells (5 × 103) were seeded in 
96-well plates and cultured at 37 °C in a 5% CO2 incuba-
tor. They were then treated with MEM-α without FBS for 
24, 48, and 72 h, after which the medium was removed. 
The initial MTT solution (5 mg/mL) was diluted 10-fold to 
a concentration of 0.5 mg/mL. The MTT working solution 
was added in 200 µL aliquots to each well and incubated 
for 2 h at 37 °C in a 5% CO2 incubator. The MTT working 
solution was discarded, and 100 µL DMSO was added to 
each well and incubated at 37 °C for 10 min. The absor-
bance at 570 nm was measured via a microplate reader.

Alizarin red staining
To assess calcium deposition in bone nodules in the 

extracellular matrix, alizarin red (Beyotime, China) was 
used to stain the mineralized nodules in the cellular ma-
trix. Cells were seeded in 6-well plates and treated with 0 
µM and 20 µM isofraxidin for 7, 14, 21, 28, and 35 days. 
The medium was then removed, and the cells were washed 

twice with PBS, fixed in an absolute ethanol fixative for 20 
min, and then removed. The fixed cells were washed twice 
with ionized water, and 1 mL of alizarin red was added to 
each well for 30 min. The solution was then rinsed twice 
with PBS. Mineralization results were observed under an 
inverted microscope (Lecia DMI5000M, Germany).

qRT-PCR
The cells were treated with isofraxidin for 7, 14, 

and 21 days. RNA samples were isolated by the TRIzol 
reagent (Life Technologies, US) and reverse transcribed 
into cDNA by a reverse transcription kit (Yisheng, China). 
The SYBR Green PCR Master Mix (Yisheng, China) was 
used to amplify cDNA. Expression levels of the four genes 
Runx2, OSX, collagen I, and ALP were quantified using 
a real-time system. The primer sequences for genes are 
listed in Table 1.

Western blotting
Western and IP cell lysis (Beyotime, China) were used 

to extract total protein, and a BCA kit (Beyotime, China) 
was used to determine its concentration. Protein samples 
(50 µg/lane) were separated using 12% SDS-PAGE, then 
transferred to PVDF membranes and blocked with 5% 
BSA for 2 h at room temperature (maintained at 24 °C). 
The membranes were incubated overnight at 4 ℃ with the 
primary antibodies against the following proteins: Oste-
rix (ab209484; 1:1000; Abcam, UK), RUNX2 (ab236639; 
1:1000; Abcam, UK), ALP (13199-2-AP; 1:1000; Protein-
tech, China), Collagen I (ab270993; 1:1000; Abcam, UK), 
and GAPDH (1:1,000; Goodhere Biotechnology, China). 
Membranes were washed trice with TBS containing 
0.05% Tween-20 (TBST). Secondary antibodies anti-rab-
bit (Lianke, Hangzhou, China) were added for 2 h at room 
temperature. After washing the trice with TBST, protein 
bands were observed using ECL, then detected via Tanon 
5200 Multi imager (Tanon Science & Technology, China).

Statistical analysis
Data analysis was performed using GraphPad Prism 

v5.0. Each experiment was performed independently for 
at least three times, and all results are presented as mean ± 
SEM. Student's t-test and two-way ANOVA test were used 
to assess statistical significance. P<0.05 was considered 
significant.

Results

Effects of isofraxidin on the viability and proliferation 
of MC3T3-E1 cells

MC3T3-E1 subclone 14 cells were treated with dif-

Figure 1. Structure of isofraxidin.

Gene Sequence (5’to3')

GAPDH Forward: GTGTTTCCTCGTAGA 
Reverse: CCTTGACTGTGCCGTTGAAT

ALP Forward: TCCGTGGGCATTGTGACTAC 
Reverse: TGGTGGCATCTCGTTATCCG

Osterix Forward: AAACATCAGCGCACCCA
Reverse: GCAGGCGAAGTGGAAGAT

RUNX2 Forward: CTTCGTCAGCATCCTATCAGTTCC
Reverse: GTCAGCGTCAACACCATCATTCT

Collagen Forward: AGAGCATGACCGATGGATTC
Reverse: CCTTCTTGAGGTTGCCAGTC

Table 1. Primer sequences of genes Runx2, OSX, collagen I, and ALP.
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Runx2, involved in osteoblast differentiation and bone 
formation were measured at 7, 14, and 21 days following 
isofraxidin treatment (Figure 5). The expression of all four 
genes was inhibited and displayed similar trends (P<0.01).

Effects of isofraxidin on mineralization
To examine the effect of isofraxidin on osteoblast 

mineralized nodules, MC3T3-E1 subclone 14 cells were 
cultured in an osteogenic inducing medium containing 0 
µM and 20 µM isofraxidin. Changes in calcium deposition 
were displayed by alizarin red staining at 7, 14, 21, 28, 
and 35 days. The staining intensity increased in a time-

ferent isofraxidin (0–225 µM) and serum (0% and 1%) 
concentrations for 24, 48, and 72 h. Isofraxidin significant-
ly inhibited cell viability in the absence of serum (P<0.01) 
(Figures 2 and 3). In contrast, 0-20 µM concentrations of 
isofraxidin had no apparent inhibitory effects following 1% 
serum administration (Figure 4). An isofraxidin concentra-
tion of 20 µM was selected for subsequent experiments to 
demonstrate the effect of isofraxidin on cells.

Effects of isofraxidin on the expression of bone mar-
kers’ gene

The transcription factors, OSX, Collagen I, ALP, and 

Figure 2. MC3T3-E1 subclone 14 treated with 0–20 µM isofraxidin 
without serum for 1, 2, and 3 days. *P<0.05; **P<0.01.

Figure 3. MC3T3-E1 subclone 14 treated with 0 µM and 45–225 µM 
isofraxidin without serum for 1, 2, and 3 days. *P<0.05; **P<0.01.
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dependent manner, and it was weaker in the 20 µM group 
than in the 0 µM group. Thus, isofraxidin inhibits cell dif-
ferentiation and mineralization (Figure 6).

Effects of isofraxidin on the expressions of osteogenic 
proteins of MC3T3-E1 cells

ALP, Collagen I, OSX, and Runx2 protein expression 
was determined in the control and isofraxidin intervention 
groups at 7, 14, and 21 days, all of which were weaker in 
the 20 µM group than in the control group (Figure 7).

Discussion

The anti-inflammatory, anti-cancer, and anti-osteoclas-

togenic (28) effects of isofraxidin, coupled with its mini-
mal side effect profile (14), have been reported in previous 
studies. However, its role in regulating osteoblast activity 
has not yet been elucidated. In this study, MC3T3-E1 sub-
clone14 cells were treated with 0–225 µM isofraxidin, and 
isofraxidin could inhibit cell activity at concentrations of 
0–20 µM. This trend gradually decreased as the concen-
tration increased from 20–225 µM and was completely 
lost following 1% serum administration. In the following 
experiments, the 20 µM and 225 µM concentrations were 
used to examine and detect. Runx2, as it is highly ex-
pressed in the bone tissue of AS patients and examining 
it at minimum and maximum concentrations will reveal 
its comprehensive profile (31). Runx2 plays a major role 
in osteogenic differentiation, which can directly regulate 
OSX expression. OSX is a downstream osteogenic dif-
ferentiation factor and regulates collagen I expression, a 
bone matrix protein gene, through p38 and ERK phos-
phorylation (32-34). In this study, Runx2, OSX, collagen 

Figure 4. MC3T3-E1 subclone 14 treated with 0–20 µM isofraxidin 
with 1% serum for 1, 2, and 3 days. *P<0.05; **P<0.01.

Figure 5. Alkaline phosphatase, collagen I, osterix, and Runx2 gene 
expression in MC3T3-E1 cells after isofraxidin treatment for 7, 14, 
and 21 days. *P<0.05; **P<0.01.

Figure 6. Alizarin Red staining (A) of MC3T3-E1 subclone 14 cells 
after isofraxidin treatment for 7, 14, 21, 28, and 35 days.

Figure 7. Collagen I, osterix, alkaline phosphatase, and Runx2 pro-
tein expression in MC3T3-E1 cells after isofraxidin treatment for 7, 
14, and 21 days..
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I, and osteogenic biomarker ALP expression levels were 
inhibited following isofraxidin treatment, as detected by 
qRT-PCR and western blotting. Moreover, through MTT 
and qRT-PCR, isofraxidin was shown to inhibit osteo-
blasts. The 225 µM concentration group was considered 
toxic to cells. Thus, alizarin red staining and western blot-
ting were not explored deeply. 

The osteogenic marker protein collagen I is a triple he-
lix molecule. The N-terminal can be divided into N-termi-
nal peptide and N-propeptide, whereas the C-terminal can 
be divided into C-terminal peptide and C-propeptide. Col-
lagen I secreted by osteoblasts is rapidly cleaved in the ma-
trix, shedding N-terminal and C-terminal peptides. Mature 
collagen I then recombine in the cell matrix (35,36). Dif-
ferent collagen I states were detected on days 7, 14, and 21 
of osteogenesis, whereby collagen I was uncleaved at day 
7 (proCollagen I), and pCollagen I (N front-end peptide) 
was found at the vigorous stage of osteogenesis on day 14. 
Cells were in a mature state at 21 days, wherein collagen 
I had recombined in the matrix, and uncleaved proCol-
lagen I was not detected in cell lysate. The above process 
is consistent with osteoblast differentiation. In addition, 
C-propeptide, which could not be cleaved by collagen I, 
was not detected on day 7. On days 14 and 21, only low 
C-propeptide expression and a miscellaneous band were 
observed, which may have been caused by incomplete 
collagen I processing between osteoblasts. There was not 
enough repeated data to accurately and comprehensively 
explore this entity, and C-propeptide was only present on 
day 14 during peak osteoblast differentiation (Figure 8).

This study has certain limitations. It does not incor-
porate sufficient in vitro analysis. Also, the specific role 
of isofraxidin in osteogenesis under the inflammatory 
microenvironment is not completely understood, and in 
vivo studies are required to comprehensively explore this 
mechanism.

Nevertheless, based on the presented results coupled 
with the chronic inflammation, pathological osteogenesis, 
and osteoporosis associated with AS, isofraxidin may be 
a potential therapeutic drug for treating this disease in the 
future.
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