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1. Introduction
Aging is an unavoidable biological process, and, as the 

body ages, it shows progressive structural degeneration 
and functional decline, with a progressively increasing 
risk of many chronic noncommunicable diseases, inclu-
ding cancer, diabetes, cardiovascular disease, and neuro-
degenerative diseases [1]. It is well known that different 
human bodies age at different rates. Although an indivi-
dual’s chronological age is a simple indicator of aging, the 
rate of aging may vary among individuals with the same 
chronological age, and the variability in cognitive func-
tion and health status increases with age. Biological age 
(BA) is the deviation between apparent and chronological 
age [2]. With the development of the field of molecular 
biology, many types of candidate biomarkers that may be 
considered relevant to the aging process have been esta-
blished. Among these, epigenetic clocks constructed based 
on DNA methylation levels are a new and valuable biolo-

gical age predictor [3]. However, their reliability as bio-
markers of aging needs to be confirmed longitudinally.

Epigenetic studies have shown a close association 
between DNA methylation and human age [4], and the 
methylation levels of some specific CpG sites are strongly 
correlated with age among individuals of the same species. 
The age of humans can be accurately predicted by buil-
ding statistical models based on age-dependent CpG locus 
methylation levels and age [5,6]. In recent years, resear-
chers have developed different age prediction clocks, also 
known as "epigenetic age clocks", using genomic DNA 
methylation data generated by different methylation ar-
ray technologies or using datasets from public databases, 
which use the temporal pattern of DNA methylation levels 
at specific CpG sites in the genome to predict age [7]. In 
2013, two classical "epigenetic age clocks", Hannum's 
clock [8] and Horvath's clock [9], were developed, both 
using a blood-tissue-based model. These two clocks are 
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age prediction models based on 71 blood tissues and 353 
CpG sites based on 51 tissues and cell types, respectively, 
with a high age correlation of 96%. Since then, several 
"epigenetic age clocks" have been reported, involving 
multiple species and various methods of clock construc-
tion based on different tissues [10-15]. The establishment 
of different epigenetic clocks not only provides an accu-
rate measurement of biological age and the rate of aging, 
but also provides a good indicator for use in the evaluation 
of various interventions to slow down aging. For example, 
mice have been shown to live significantly longer and have 
lower epigenetic ages when subjected to caloric restriction 
and growth hormone receptor knockout [16]. In a human 
clinical trial involving the regeneration of the thymus, 
reversal of immune senescence was accompanied by a de-
crease in epigenetic age [17]. Interventions such as dietary 
restriction, exercise, and rapamycin supplementation have 
all been shown to slow the epigenetic clock of aged mice 
without modifying the genomic sequence [18,19].

A variety of machine learning approaches have been 
tested for the purpose of predicting human age based on 
molecular-level features, mainly the penalized multi-va-
riate regression method (e.g., Elastic Net) [20], support 
vector regression [21], gradient boosting regression [22], 
and random forest regression [23]. In the past few years, 
deep learning has been gradually introduced in the field 
of machine learning. Deep learning provides great oppor-
tunities in the field of human biological aging research. 
Deep learning algorithms are based on artificial neural 
networks. Artificial neural network algorithms are a class 
of pattern-matching algorithms that mimic biological neu-
ral networks and are commonly used to solve classification 
and regression problems. Vidaki et al. [24] compared the 
accuracy of epigenetic clocks constructed using a multiple 
regression analysis model and a generalized regression 
neural network model. The mean absolute error (MAE) of 
the former was 4.6 years; in the latter, the age prediction 
was significantly improved (R2 = 0.96) with an MAE of 
3.3 years for the training set and 4.4 years for the blind 
test set out of a total of 231 cases. Subsequently, Galkin 
et al. [25] constructed a biological age clock (DeepMAge) 
based on blood DNA methylation profiles using neural 
networks with an absolute median error of only 2.77 years, 
providing higher accuracy.

In this study, age-related characteristic methylation 
sites were obtained using a random forest approach to 
screen human peripheral blood methylation data from nor-
mal samples of different ages. Then, we constructed an 
age classification model using an artificial neural network 
algorithm and tested its efficacy. Our analysis revealed that 
the levels of the characteristic methylation sites were si-
gnificantly different between the two age samples and that 
there was a significant correlation between these methy-
lation sites. Finally, based on characteristic methylation 
sites, we constructed a multifactor regulatory network, 
and the transcriptional and post-transcriptional regulation 
patterns of the genes corresponding to these age-related 
methylation sites were predicted.

2. Materials and Methods
2.1. Data Download and Preprocessing

We used the National Center for Biotechnology In-
formation (NCBI) GEO (https://www.ncbi.nlm.nih.gov/
geo/ ) by keywords (Age (All Fields) AND (methylation 

(All Fields))) AND "Homo sapiens"(porgn:__txid9606) to 
search for methylation data from normal human samples. 
When screening the data, it was required that the tissue 
source be peripheral blood and that the DNA methylation 
data be from adult individuals with age information.

The GSE147221 dataset was obtained after the screen-
ing, containing normal samples from 327 adult individuals 
of different ages and peripheral blood source methylation 
data. Among these, 94 samples were from people aged >50 
years and 108 samples were from people aged between 18 
and 35 years. A total of 202 samples were available for the 
analysis conducted in this study. To test the performance 
of our model, we divided the samples randomly (half of 
the samples) into a training set and a validation set.

2.2. Differential DNA Methylation Site Screening
We used the R function "DESeq2" to calculate the dif-

ferential methylation sites of the two age groups’ samples 
(18-35 years old vs. > 50 years old). The screening condi-
tion for differential methylation sites was |Δβ| > 0.10 and a 
P-value of <0.05 [26].

2.3. Functional Annotation of Differentially Methyl-
ated Sites

The genes corresponding to the differentially methyla-
ted sites were downloaded from the GSE147221 dataset. 
The corresponding genes were compared with those in the 
GO and KEGG functional databases using the "Cluster-
Profiler" function to obtain annotations of these genes for 
gene function analysis.

2.4. Random Forest Model Construction
We used a random forest algorithm to filter age-related 

characteristic methylation sites. In machine learning, a ran-
dom forest is a classification model that contains multiple 
decision trees, the output of which is determined by the 
plurality of the categories output by the individual trees. 
Each tree of the random forest algorithm is constructed 
according to the following algorithm: N is used to denote 
the number of training samples and M denotes the number 
of features. The number of input features, m, is used to 
determine the decision outcome of a node in the decision 
tree, where m should be much smaller than M. From the 
N training samples, a training set is formed by sampling N 
times with put-back sampling (i.e., bootstrap sampling), 
and the unsampled samples are used for prediction to eva-
luate the error. For each node, m features are randomly 
selected, and the decision of each node in the decision tree 
is determined based on these features. Based on these m 
features, its optimal split is calculated. Each tree grows 
intact without pruning, which is likely to be adopted after 
building a normal tree classification model.

The R function "randomForest" (https://www.stat.ber-
keley.edu/breiman/RandomForests/ ) was used here for 
the construction of random forests. The input data were 
DNA methylation profiles and differentially methylated 
sites, and the characteristic methylated sites that contri-
bute to age prediction were screened.

2.5. Artificial Neural Network Model Construction
We used the R function "nnet" (http://www.stats.ox.ac.

uk/pub/MASS4/) to construct an artificial neural network 
model. After calculating the weights of the characte-
ristic methylation sites, an age classification model was 
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cg16725305, cg21627202, and cg22302772.

3.2. Results of Functional Enrichment Analysis of 
Genes Corresponding to Differentially Methylated 
Sites

The genes corresponding to the 44 differentially 
methylated sites were enriched with terms in the GO data-
base such as the neuron-to-neuron synapse, the intrinsic 
component of the postsynaptic specialization membrane, 
the integral component of the postsynaptic specialization 
membrane, and the postsynaptic specialization membrane 
(Figure 2a, b, and c), as well as the neuroactive ligand-re-
ceptor interaction pathway obtained from the KEGG data-
base (Figure 2d).

3.3. Age-Related Characteristic Methylation Sites
When using differential methylation sites to train the 

random forest classification model, we first explored the 
parameter "mtry" and found that when it was equal to 9, 
the error was the smallest (Figure 3a). We then explored 
the parameter "ntree" and found that when it was equal to 
200 or more, the error tended to be stable (figure 3b). The 
importance of the differential methylation sites was eva-
luated with the parameter mtry equal to 9 and ntree equal 
to 200 in the training classification model, and then the 
age-related characteristic methylation sites were screened.

According to the threshold (importance value cutoff 
= 0.0075), we screened 11 age-related characteristic 
methylation sites, which were cg03025830, cg04875128, 
cg05404236, cg08128734, cg10501210, cg11807280, 
cg12934382, cg16867657, cg18473521, cg19283806, and 
cg22454769 (Figure 3c and d).

3.4. Artificial Neural Network Model
We used the age-related characteristic methylation 

sites identified by the random forest model to construct an 
artificial neural network (Figure 4a). The receiver opera-
ting characteristic (ROC) curves were then plotted in the 
training and validation sets to evaluate the predictive effi-
cacy of the classification model. The area under the curve 
(AUC) of the model in the validation set reached 0.97, 

constructed. Age classification was then performed on 
the validation set based on the characteristic methylation 
level, and the effectiveness of the classification model was 
evaluated.

2.6. Analysis of Methylation Sites with Age-Related 
Characteristics

In the training set and verification set, the gene expres-
sion profiles of the characteristic methylation sites were 
extracted and visualized using the heatmap function in R 
to draw a heatmap of the distribution of the characteristic 
methylation sites in the real and predicted samples.

The differences in the methylation levels at the cha-
racteristic methylation sites were evaluated for those aged 
18-35 years and >50 years in the verification set; a box 
diagram was drawn, and the difference in the p-values of 
methylation levels of the characteristic methylation sites 
between the two different age groups was calculated.

The methylation profiles of characteristic methylation 
sites were extracted and the methylation level correlations 
of characteristic methylation sites were analyzed.

2.7. Construction of a Multifactor Regulatory Network 
Based on Age-Related Characteristic Methylation Sites

Obtaining the Transcription Factor Target Gene 
Network of the mRNA-TF Network

The transcription factor target gene data were obtained 
from the integration of several datasets: TRANSFAC (27), 
ENCODE (28), CHEA (29), and TRRUST (30), where the 
transcription factor target gene data from the TRANSFAC, 
ENCODE, and CHEA datasets were downloaded from the 
Harmonizonme website (31) (http://amp.pharm.mssm.
edu/Harmonizome/ ) and the TRRUST transcription fac-
tor target gene data were downloaded from the TRRUST 
website (www.grnpedia.org/trrust/ ). The transcription 
factor target gene data obtained from the above four data-
bases were combined into an integrated transcription fac-
tor target gene network to obtain a pooled network of all 
the transcription factors regulating the genes correspon-
ding to the characteristic methylation sites.

Obtaining mRNA–miRNA Interactions
Using the RNA Interoperability Database online tool 

(TarBase v.8http://carolina.imis.athenainnovation.gr/
diana_tools/web/index.php?r=tarbasev8%2Findex&miR-
NAs%5B%5D=&genes%5B%5D=FGF17&sources%5B
%5D=1&sources%5B%5D=7&sources%5B%5D=9&p
ublication_year=&prediction_score=&sort_field=&sort_
type=&query=), we searched for characteristic methy-
lation sites corresponding to genes with low throughput 
or prediction scores of 9.5 or higher for mRNA–miRNA 
relationships.

We searched the database for RNA–RNA interac-
tions among the genes corresponding to the characteristic 
methylation sites, including mRNA–mRNA, microRNA–
mRNA, and lncRNA–mRNA interactions (http://www.
rna-society.org/rnainter/ ; a prediction score of 9.5 or 
higher was required).

3. Results
3.1. Differential Methylation Sites

We identified 44 differentially methylated sites in the 
two groups of samples, corresponding to ages of 18-35 
years and >50 years (Figure 1). Among them, the five 
sites with the largest Δβ were cg04891883, cg09279615, 

Fig. 1. Heat map of differentially methylated sites.
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indicating that the model was able to accurately assess the 
age information of the samples (Figure 4b and c).

3.5. Analysis of Methylation Sites with Age-Related 
Characteristics
3.5.1. Methylation-Level Heatmap of Characteristic 
Methylation Sites

According to the methylation-level heatmaps of these 
characteristic methylation sites, we found that the samples 
from people of different age groups were clustered in 
their respective classes, and that the methylation levels of 
the characteristic methylation sites differed significantly 
between the two age groups. A further illustration of the 
correlation between the characteristic methylation sites 
and age is shown in Figure 5. More importantly, the age 
group predicted by the artificial neural network prediction 
model was basically consistent with the real age group of 
the samples.

3.5.2. Differences in the Methylation Levels of the 
Methylation Sites with Age-Related Characteristics

The figure shows that the methylation levels of the 11 
characteristic methylation sites were very significantly and 
statistically different between the two groups of samples 
in the validation set, taken from people aged 18-35 and 
>50 years. The methylation levels of seven of the CpG 
sites gradually increased with age, while the other four 
gradually decreased with age (Figure 6). We found nine 
characteristic methylation sites that corresponded to genes 
shown in Table 1, among which ELOVL2 and FHL2 have 
been reported to be associated with biological age in many 
studies.

3.5.3. Correlation of methylation levels with age-relat-
ed characteristic methylation sites

The methylation levels of the characteristic meth-

Fig. 2. The differential methylation sites corresponding to gene func-
tional annotations. (a) biological processes from the GO database; (b) 
cellular components from the GO database; (c) molecular functions 
from the GO database; and (d) the gene functional enrichment map 
from the KEGG database.

Fig. 3. Construction of a random forest model and screening of age-
related characteristic methylation sites. (a) and (b) random forest mo-
del parameter training and selection process; (c) and (d) age-related 
characteristic methylation sites.

Fig. 4. Artificial neural network model construction and effectiveness 
evaluation. (a) the construction process of the artificial neural network 
model, (b) the ROC curve of the training set, and (c) the ROC curve 
of the verification set.
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ylation sites were all significantly correlated (Figure 7). 
The strongest positive correlation was found between 
cg16867657 and cg2245476, with a correlation coefficient 
of 0.81, while cg16867657 showed a significant negative 
correlation with cg19283806, with a correlation coeffi-
cient of -0.78.

3.6. Multifactor Regulatory Network of Age-Related 
Characteristic Methylation Sites

A multifactorial regulatory network was constructed 
based on the regulatory relationships of the RNAs of the 
genes corresponding to age-related characteristic methyla-
tion sites. We identified 894 pairs of interactions between 
9 genes and 283 transcription factors. The corresponding 
gene of cg05404236, IRS2, had 21 pairs of mRNA–miR-
NA interactions; the corresponding genes of cg08128734 

and cg22454769, RASSF5 and FHL2, had one and three 
pairs of mRNA–miRNA interaction relationships, respec-
tively; and IRS2 and FHL2 had the same lncRNA–mRNA 
interaction relationship (Figure 8).

4. Discussion
Human aging is influenced by the interaction of many 

complex factors. Altered DNA methylation status is an 
important factor, and an increasing number of studies have 
shown that DNA methylation levels can predict the bio-

Characteristic Methylation Sites Corresponding Genes
cg03025830 FGF17
cg04875128 OTUD7A
cg05404236 IRS2
cg08128734 RASSF5
cg12934382 GRM2
cg16867657 ELOVL2
cg18473521 HOXC4
cg19283806 CCDC102B
cg22454769 FHL2

Table 1. Genes corresponding to methylation sites with age-related characteristics.

Fig. 5. Heatmap of methylation levels at characteristic methylation 
sites. (a) the training set and (b) the validation set. The top two rows 
are annotated with the true and predicted sample distributions, respec-
tively, and the clustering method used for the rows and columns was 
hierarchical clustering.

Fig. 6. Methylation levels at the characteristic methylation sites in the 
validation set. ‘***’means P < 0.001.

Fig. 7. Significant correlation between age-related characteristic 
methylation sites. Red represents positive correlations, and blue re-
presents negative correlations. The upper right corner shows the cor-
relation between the characteristic methylation sites according to the 
color block; "*" indicates a correlation level P<0.01; the lower left 
corner shows the correlation coefficient r value.
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logical age of individuals; additionally, changes in DNA 
methylation levels are chemically and biologically stable 
and are expected to be biological markers of aging. Our 
age classification model is derived from peripheral blood, 
which is advantageous for designing practical diagnostics 
and testing samples collected from other studies. The ad-
vantages of blood tissue have been demonstrated on Han-
num's clock, the first epigenetic clock constructed based 
on blood alone. The clock is also representative of other 
tissues (e.g., lung, kidney, skin), and its age prediction er-
ror is comparable to that in blood. Additionally, this study 
suggests that age-related changes in DNA methylation 
modifications are intrinsic to the methylome, rather than 
being primarily due to cellular heterogeneity, i.e., changes 
in the cell type composition of whole blood with age [8]. 
Prior to this, Rakyan et al. also reported age-related epige-
netic modifications in purified CD4+ T cells and CD14+ 
monocytes, similar to the changes observed in whole 
blood [32].

In this study, 11 characteristic methylation sites 
screened by random forest had significant age correla-
tion, among which 5 methylation sites (cg04875128, 
cg10501210, cg16867657, cg18473521, cg19283806) 
were identical to Hannum's clock. The corresponding 
genes are OTUD7A, ELOVL2, HOXC4, and CCDC102B. 
ELOVL2 has been used in many epigenetic age clocks 
[33-35]. Garali et al. [36] constructed several age predic-
tion models using multiple statistical models based on 
only seven CpG sites of the peripheral blood ELOVL2 
promoter, with a mean absolute deviation (MAD) of 4.41-
4.77 and a root mean square error of 6.40-6.73. In addi-
tion, we identified six new age-related DNA methylation 
sites. Among them, cg22454769 corresponds to the gene 
FHL2, which is frequently reported to be associated with 
age [37, 38]. Another age-related DNA methylation site, 
cg03025830, corresponds to the gene fibroblast growth 
factor 17 (FGF17). A recent study suggested that FGF17 is 
a key target for restoring oligodendrocyte function in the 
aging brain. Infusion of FGF17 into the cerebrospinal fluid 

of aged mice induces proliferation and long-term memory 
consolidation of oligodendrocyte progenitor cells (OPC) 
in aged mice, whereas FGF17 blockade impairs cognition 
in young mice [39].

Our age classification model combines random forest 
and artificial neural network development, and the AUC 
of this model in the validation set is as high as 0.97, which 
can accurately distinguish between the 2 age groups of 
18-35 years and >50 years. Current epigenetic age clocks 
constructed based on DNA methylation sites use mainly 
machine learning algorithms, and artificial neural network 
algorithms are less used. Horvath's team has established 
epigenetic aging clocks for several species (e.g., human 
[9], rhesus monkey [40], horse [41], dog [42], cat [43], 
etc.) using penalized regression models. Recently, Za-
guia et al. [44] compared and analyzed an age prediction 
model developed using four different machine learning 
techniques. Among all the techniques, the model construc-
ted using random forest regression showed the best per-
formance. In addition, Fan et al. [45] screened 34 CpG 
sites of five genes (FHL2, ELOVL2, C1orf132, TRIM59, 
and KLF14) from blood samples, used different machine 
learning algorithms to build their models, and evaluated 
four age prediction models. They found that the MAD of 
the model constructed using random forest was only 1.15 
years.

Deep learning was founded on the study of artificial 
neural networks, the core of deep learning. Aging is a com-
plex process. The strength of deep learning in processing 
nonlinear data holds promise for the future interpretation 
of more types of complex biological data in the context 
of aging, with its greater ability to take into account the 
confounding effects of ethnic, geographic, behavioral, and 
environmental factors on predicting biological age [46]. 
In comparison with traditional machine learning algo-
rithms, deep learning offers a paradigm shift for biological 
age studies. It is able to independently extract meaning-
ful knowledge from complex data and avoid performing 
feature engineering or feature extraction to obtain robust 
performance [47]. In 2016, Putin et al. [48] reported a bio-
logical age prediction model built based on deep learning 
algorithms and developed an online system available at 
http://www.aging.ai. They combined basic blood metrics 
from more than 56,000 healthy individuals with actual 
age to design a modular combination of 21 Deep Neural 
Networks (DNNs). In this combination, the best-perfor-
ming DNN had an MAE of 6.07 years when predicting 
age in 10 years, while the MAE for the entire combination 
was 5.55 years. Two years later, the team combined blood 
sample data from three populations of aging countries 
(South Korean, Canadian, and Eastern European) and then 
used DNNs to construct a biological age clock for a gene-
ral population with a prediction accuracy of 5.94 years for 
MAE. The study showed that the accuracy of age predic-
tion for both the combined population and each country’s 
population was improved by using the combined dataset 
to construct the clock model. Thus, clocks with ethnic di-
versity have greater accuracy in predicting the biological 
age of different ethnic populations than general biologi-
cal age clocks. Deep learning algorithms possess a signi-
ficant advantage in describing the nonlinear relationship 
between blood parameters and actual age [49]. Recently, 
Gialluisi et al. [50] also constructed a biological age clock 
based on blood parameters including metabolic, cardiac, 

Fig. 8. Multifactor regulatory network of age-related characteristic 
methylation sites. The different colors and shapes of the nodes in the 
figure represent different types. Green hexagon: age-associated cha-
racteristic methylation sites; yellow ellipse: mRNA; orange diamond: 
transcription factor (TF); blue V-shape: microRNA; and pink triangle: 
lncRNA.

http://www.aging.ai
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renal, and liver function markers by DNNs. The risk rela-
tionship between lifestyle, economic status, etc., and the 
health status of the country's population was significantly 
predicted by Δage (BA-CA), with positive and negative 
values representing accelerated and slowed aging of the 
organism, respectively. Unfortunately, due to the sample 
size limitation, our age classification model does not use 
deep learning.

Population aging has become a major trend in human 
development. As a developing country, the trend of popu-
lation aging in China is already evident. It is estimated 
that by 2050, people aged 65 and above will account for 
about 20% of the total population in China [51]. China is 
in the process of industrialization and urbanization, which 
has led to an increasing impact of behavioral changes and 
environmental factors on human health [52]. The biologi-
cal age classification model we currently constructed can 
only classify young and middle-to-old age groups. In the 
next step, we will expand the sample size, increase the age 
prediction range, and combine the routine clinical biomar-
kers' metrics [53,54] to construct a biological age clock 
applicable to the Chinese population using deep learning.

The traditional view is that the methylation of CpG 
dinucleotides has a repressive effect on the DNA-binding 
activity of most transcription factors. However, this view 
is gradually changing because a number of studies have 
reported that more than one-third of TFs may preferential-
ly bind to methylated sequences [55,56]. We constructed a 
multifactor regulatory network of genes corresponding to 
age-related characteristic methylation sites, which can be 
used to subsequently investigate the role of transcription 
factor binding DNA activity in relation to the methylation 
of CpG, expecting to further reveal the post-transcriptio-
nal regulation pattern of age-related genes and explore the 
aging regulation mechanism of the organism.

5. Conclusions
Our age classification model constructed using random 

forest and artificial neural network can accurately distin-
guish between people aged 18-35 years and >50 years, de-
monstrating the reliability of DNA methylation as a mole-
cular marker of aging. With this model, we can accurately 
distinguish between different age groups at the molecular 
level, which will be more predictive than chronological 
age for assessing individual aging and future health status.
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