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1. Introduction
Spinal cord injury (SCI) stands as a profoundly devas-

tating neurologic condition, marked by severe dysfunc-
tion, paralysis, and even death [1-3]. The aftermath of 
trauma triggers the activation of microglia in situ, initia-
ting a cascading neuroinflammatory response. This res-
ponse, in turn, sets off the innate immune system, recogni-
zing exogenous neurotoxic substances and pro-inflamma-
tory stimuli [3,4]. The consequence is an accumulation of 
excessively activated microglia in the vicinity of the injury 
focus, releasing massive pro-inflammatory cytokines that 
induce further neuronal damage [4]. Furthermore, the me-
diators produced by these activated microglia exert addi-
tional stimulation on astrocytes, leading to their accumu-
lation around the injury epicenter [5].

Despite the partial protective effect of the glial barrier 
against necrocytotoxins in the injury focus, neurogenesis 
and neurostructural remodeling are significantly impeded 
during the neurologic repair stage [6]. Clinically, methyl-
prednisolone has emerged as a primary treatment against 
neuroinflammation, offering a crucial means to limit secon-
dary damage, alongside surgical interventions [7]. Howe-
ver, its effectiveness in rescuing neurologic loss remains 
limited. Consequently, there is an urgent need to explore 

novel and effective therapeutic strategies to address the 
pervasive issue of SCI-induced neuroinflammation.

Dihydrotestosterone (DHT), a metabolite of testoste-
rone, has shown notable neuroprotective effects in precli-
nical settings, including conditions such as Alzheimer's 
disease (AD) [8], Parkinson’s disease (PD) [9], and mul-
tiple sclerosis (MS) [10]. These effects are attributed to its 
anti-apoptotic and antioxidative stress properties. Despite 
these promising findings, few studies have delved into the 
specific role of DHT in neuroinflammation. While the an-
ti-inflammatory effects of androgens in peripheral inflam-
matory diseases have been documented in both animal and 
clinical studies [11], the impact of DHT on neuroinflam-
mation in the context of SCI and the central nervous sys-
tem remains elusive.

In light of these considerations, there is a pressing need 
to investigate the effects and underlying mechanisms of 
DHT on neural tissue post-SCI. Previous studies have 
indicated the protective role of gonadal hormones, such 
as estradiol and DHT, in safeguarding spinal motoneu-
rons following SCI [12,13]. Notably, androgens have been 
reported to rescue avian embryonic lumbar spinal moto-
neurons from injury-induced cell death [14]. However, 
whether DHT administration can effectively reduce neu-
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roinflammation to exert therapeutic action in SCI has not 
been comprehensively explored.

Therefore, the primary objective of the present study 
is to probe the therapeutic effects of DHT on SCI. Addi-
tionally, we aim to mechanistically investigate the role of 
DHT and its associated neuroinflammation pathway in the 
regulation of SCI. To provide a comprehensive context, it 
is essential to consider the epidemiology of SCI, offering 
insights into the prevalence, incidence, and societal impact 
of this debilitating condition. Furthermore, we will briefly 
highlight some recent advances in the treatment of SCI, 
emphasizing the evolving landscape of therapeutic inter-
ventions in this field.

2. Materials and Methods
2.1. Cell culture and treatment

The BV2 microglia line and was obtained from the 
Hubei University of Medicine. Cells were cultured in 5×5 
cm2 flasks containing 5 mL dulbecco's modified eagle 
medium (DMEM, Gbico, Rockville, MD, USA) supple-
mented with 10% fetal bovine serum (FBS, Gbico, Rock-
ville, MD, USA) and 100 U/mL penicillin-streptomycin 
(Gbico, Rockville, MD, USA). For cell treatment, DHT 
(MedChemExpress, Shanghai, China) was dissolved in 
0.1% dimethyl sulfoxide (DMSO, sigma, St. Louis, MO, 
USA). Then the microglia medium was added to 10 nM 
DHT for 30 min. Lipopolysaccharide (LPS, 1 μg/mL 
Sigma-Aldrich, St. Louis, MO, USA) was dissolved in 
DMEM and added in microglia medium for 18 h.

2.2. Animals and grouping
Adult male C57/B6J mice, aged 6-8 weeks (20-22 g), 

were housed in Hubei University of Medicine. Standard 
laboratory conditions, such as 12 h/12 h light/dark cycle, 
available food and water, 50% humidity as well as 22 ± 
1°C temperature, were provided. Mice were randomly 
assigned to three different experimental groups. The Sham 
group (Sham), SCI group, and SCI+DHT group (n=9) 
were established in the study. The study was approved 
by the animal ethical committee of Hubei University of 
Medicine.

2.3. Spinal cord injury
The modeling method was described as follows: mice 

were anesthetized intraperitoneally using xylazine (5 mg/
kg) and ketamine (95 mg/kg) by normal saline, then we 
conducted laminectomy and impacted the 10th spinal cord 
using 70 kilodyne using an NYU Impactor. DHT was sub-
cutaneously injected (5 mg/kg/day) for two weeks post 
SCI. 

2.4. Enzyme-linked immunosorbent assay (ELISA)
Microglia medium and tissue homogenate were collec-

ted. We centrifuged them for 5 min and isolated the super-
natant. ELISA of pro-inflammatory factors was conducted 
using an ELISA Kit (KeyGen, Nanjing, China) according 
to manufacturer’s instructions. The absorbance (OD va-
lue) of each well was measured at 450 nm using a spectro-
photometer. 

2.5. Western Blotting
Protein was extracted from cells using a Total Protein 

Extraction Kit (KeyGen, Nanjing, China) directed by the 

manufacturer’s protocols. Concentration determination 
was employed with a Bicinchoninic Aid (BCA) Assay Kit 
(Thermo Scientific, Waltham, MA, USA). Then equiva-
lent protein was performed electrophoresis using sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) followed by transfer and immuno-blocking. Incu-
bation of primary and secondary antibodies (iNOS (1;250, 
Abcam, Cambridge, MA, USA), COX-2 (1;1000, Abcam, 
Cambridge, MA, USA), p-p65 (1:1000, Abcam, Cam-
bridge, MA, USA), p65 (1:1000, Abcam, Cambridge, MA, 
USA), p-p38 (1:1000, Abcam, Cambridge, MA, USA), 
p38 (1:1000, Abcam, Cambridge, MA, USA), β-Actin 
(1;2000, Abcam, Cambridge, MA, USA), and Goat An-
ti-Rabbit IgG H&L (HRP) (1:2000, Abcam, Cambridge, 
MA, USA)), protein was exposed using an enhanced che-
miluminescence (ECL) system (Tanon, China) and quanti-
fied using ImageJ software (USA).

2.6. Immunofluorescence (IF) and immunohistochemi-
cal staining (IHC)

Cord tissues were collected after mouse sacrifice. Cells 
and tissues were fixated with 4% paraformaldehyde (PFA) 
for 24 h. Following dehydration by ethanol and permea-
tion by xylene, tissue was embedded into paraffin and cut 
into 6 μm sections using a rotary microtome. Roasted for 
48 h, sections were deparaffined, hydrated and antigen 
repaired. For IF, Sections and cells were incubated with 
iNOS (1:100, Abcam, Cambridge, MA, USA), IBA-1 
(1:300, Abcam, Cambridge, MA, USA), TNF-α (1:200, 
Abcam, Cambridge, MA, USA), IL-1β (1:200, Abcam, 
Cambridge, MA, USA), GFAP (1:200, Abcam, Cam-
bridge, MA, USA) and fibronectin (1:200, Abcam, Cam-
bridge, MA, USA) overnight at 4°C. For IF, sections were 
incubated with Alexa Fluor® 488 or 594 (1:200, Abcam, 
Cambridge, MA, USA) for 1 h. The nucleus was stained 
with diamidine phenylindole (DAPI, Mounting Medium 
With DAPI-Aqueous, Fluoroshield, Abcam, Cambridge, 
MA, USA). For IHC, sections were incubated with p-p38 
(1:100, Abcam, Cambridge, MA, USA) and p-p65 (1:200, 
Abcam, Cambridge, MA, USA) overnight at 4°C. IHC 
staining using a DAB Coloring Kit (Solarbio, Beijing, 
China) according to manufacturer’s protocols and hema-
toxylin was used to counterstain the nucleus. Then the 
images of sections were visualized and collected using a 
fluorescence inversion microscope system.

2.7. Behavioral assessment
Mice in each group were allowed to free movement in 

an open field for 4 min at 1days, 3 days, 7 days, 14 days, 
and 28 days post SCI. Two researches scored sports situa-
tions according to the Basso Mouse Scale (BMS) in a blind 
way. Then data were collected and analyzed in statistics.

2.8. Statistical analysis
Data were displayed as the means ± SD. The diffe-

rence in statistics between the two groups was assessed 
using Student’s t-test. Difference among more than two 
groups was evaluated via one-way or two-way ANOVA. 
Data were collected and analyzed using Statistical Product 
and Service Solutions (SPSS) 18.0 software (SPSS Inc., 
Chicago, IL, USA). P<0.05 means statistical significance.
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3.2. DHT treatment inhibits TLR4-mediated p65 and 
MAPK-p38 pathways in inflammatory microglia

Further, we investigated whether DHT inhibited toll-
like receptor 4 relative signaling pathways to exert an 
anti-inflammation effect. Western blot exhibited increased 
expressions of phosphor-NF-κB p65 (p-p65) and phos-
phor-MAPK p38 (p-p38) in LPS-induced inflammatory 
microglia, whereas DHT treatment decreased p-p65 and 
p-p38 protein levels (Figure 2A-2C). We also detected the 
expressions of iNOS and cyclooxygenase-2 (COX-2), the 
protein levels of iNOS and COX-2 exhibited consistent 
expressions with p-p65 and p-p38. (Figure 2D-2F). The 
above results indicate that DHT attenuates inflammatory 
response in microglia via down-regulation of NF-κB p65 
and MAPK p38 pathways.

3.3. Administration of DHT attenuates systemic neu-
roinflammation after SCI

We next evaluated the possible therapeutic effect of 
DHT in SCI mice. Firstly, we measured the microglia acti-
vation via IF, founding massive inflammatory microglia 
neighboring the injured centre following SCI, but DHT 
treatment reduced activated microglia surrounding injured 
focus (Figure 3A). IHC staining showed increased p-p65 
and p-p38 in injured site after SCI, however, DHT admi-
nistration reduced p-p65 and p-p38 positive area in inju-
red site at 3 days post-trauma (Figure 3B). ELISA showed 
that the expressions of TNF-α, IL-1β and IL-6 dramati-
cally increased in injured tissue while treatment with DHT 
decreased the levels of the pro-inflammatory cytokines 
(Figure 3C-3E). Hence, we demonstrate that DHT reduces 
neuroinflammation in injured tissue via inhibition of NF-
κB and MAPK p38 pathways.

3.4. Effect of DHT mitigates glial accumulation and 
fibrosis focus in injured site

Furthermore, we investigated the effect of DHT treat-
ment on protection of neural repair and locomotor func-

3. Results
3.1. DHT reduces LPS-induced inflammatory activa-
tion in BV2 microglia 

To provoke an inflammatory response in microglia, 
we performed LPS administration for stimulation. Then 
the released pro-inflammatory cytokines in medium, such 
as tumor necrosis factor (TNF)-α, interleukin (IL)-1β 
and IL-6 were detected using ELISA, showing that the 
expressions of TNF-α, IL-1β and IL-6 were significantly 
increased following LPS treatment, whereas DHT reduced 
the levels of the above pro-inflammatory cytokines in LPS 
treated microglia medium (Figure 1A-1C). To verify in-
flammatory activation in BV2 microglia, the representa-
tive mediator inducible nitric oxide synthase (iNOS) and 
the microglial marker ionized calcium-binding adaptor 
molecule-1 (IBA-1) were visualized using IF, the Figure 
1D showed that LPS administration significantly increased 
iNOS (Red) expressions in microglia (Green), however, 
DHT administration reduced iNOS expression in micro-
glia. It was indicated that DHT decreased inflammatory 
microglia activation after LPS stimuli. Furthermore, the 
pro-inflammatory cytokines in cells including TNF-α and 
IL-1β were examined using IF, exhibiting that the levels 
of TNF-α (Red) and IL-1β (Green) elevated markedly post 
LPS utilization while synthetic inflammatory cytokines 
reduced in microglia with DHT treatment (Figure 1E). 
Hence, it is proved that DHT could reduce LPS-induced 
inflammatory microglia activation.

Fig. 1. DHT reduces LPS-induced inflammatory activation in BV2 
microglia. (A-C) Representative ELISA of TNF-α, IL-1β and IL-6 in 
control, LPS and LPS+DHT treated microglia medium. (D) Repre-
sentative IF of iNOS (red) and COX-2 (green) in control and LPS-
treated microglia, (magnification: 100×). (E) Representative IF of 
TNF-α (red) and IL-1β (green) in control, LPS and LPS+DHT treated 
microglia, (magnification: 200×). “***” P<0.001, “**” P<0.01 and 
“*” P<0.05 vs. control group and “###” P<0.001, “##” P<0.01 and 
“#” P<0.05 means vs. LPS group with statistical significance.

Fig. 2. DHT treatment inhibits TLR4-mediated p65 and MAPK-p38 
pathways in inflammatory microglia. (A) Representative western 
blotting including p-p65, p65, p-p38 and p38 in control, LPS and 
LPS+DHT treated microglia. (B-C) Quantification of the ratios of 
p-p65/p65 and p-p38/p38. (D) Representative western blotting inclu-
ding COX-2 and iNOS in control, LPS and LPS+DHT treated micro-
glia. (E-F) Quantification of the protein levels of COX-2 and iNOS. 
“***” P<0.001, “**” P<0.01 and “*” P<0.05 vs. control group and 
“###” P<0.001, “##” P<0.01 and “#” P<0.05 means vs. LPS group 
with statistical significance.
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tional recovery. IF staining showed that SCI resulted in 
accumulation of excessive microglia (IBA-1 positive) and 
astrocytes (GFAP positive) around the epicenter at 28 days 
post-trauma, whereas administration of DHT reduced the 
area of glial scar in neurologic tissue (Figure 4A). Then we 
further measured the fibrosis degree in injured site using 
IF, showing that the positive region of fibronectin in inju-
red focus significantly decreased in injured site after DHT 
treatment at 28 days post SCI (Figure 4B). Moreover, we 
evaluated BMS scores in each group at 1 day, 3 days, 7 
days, 14 days and 28 days, respectively. The BMS scores 
in the Sham group were at 9 points during 4 weeks, scores 
in other groups were at 0 points on 1 day after trauma, the 
scores in the SCI+DHT group were significantly higher 
than those in the SCI group and SCI+Mel+EX527 group 
beginning at 7 days post-SCI and continued to 28 days 
(Figure 4C). Hence, the results proved that administration 
of DHT protects neural tissue from gliosis and fibrosis, 
improving locomotor functional recovery after SCI.

4. Discussion
Neuroinflammation is one of the important physiologi-

cal and pathological events after SCI [15,16]. In this study, 
we demonstrated that DHT played an anti-inflammatory 
role in LPS-mediated inflammatory microglia by inhibi-
ting NF-κB and P38 signaling pathways. In addition, in 
vivo experiments showed that administration of DHT si-
gnificantly attenuated the level of neuroinflammation post-
SCI, thus reducing gliosis and tissue fibrosis associated 
with inflammatory response, and eventually promoting the 
recovery of locomotor function in mice. Aberrant micro-
glia activation and extensive neuroinflammation in neuro-
pathy play a lethal role in the pathogenesis of aggravating 

neural injury [17]. Previous studies [18,19] have shown 
that androgens inhibited the progression of inflammatory 
responses by inhibition of macrophage activation. There-
fore, DHT potentially plays an anti-inflammatory role in 
systemic diseases associated with neuroinflammation. In-
flammatory microglia respond rapidly to LPS stimulation 
and thereby release inflammatory mediators such as NO, 
PGE2, TNF-α and IL-1β [8,20]. Androgen has been found 
to reduce the expression of inflammatory factors including 
TNF-α, IL-1β, and IL-6 in peripheral neuroinflammatory 
diseases as an alternative therapy. Here, we found that 
DHT inhibited the activation of pro-inflammatory micro-
glia and reduced proinflammatory cytokines including 
iNOS, COX-2, TNF-α, IL-1β and IL-6, and the reduction 
of these inflammatory mediators is also regulated via DHT 
in injured spinal cord. These findings are consistent with 
previous results that androgen therapy reduces TNF-α and 
IL-1β [8,21]. As adverse effects after neuroinflammation, 
glial chemotaxis and long-term stimulation of chronic 
inflammation mediate the formation of glial scar and the 
occurrence of fibrosis in lesion after SCI. Previous studies 
have exhibited that glial hyperplasia and alternative fiber 
repair could hinder the recovery of neurogenic function, 
while the effective reduction of glial scar area and the pa-
thogenesis of fibrosis promoted the recovery of neural tis-
sue [22-24]. We discovered that DHT also reduced aggre-
gation of glial cells and fibronectin levels at the last phase 
of SCI, which may be related to the negative regulation of 
neuroinflammation in the early phase. In terms of the me-
chanism by which DHT downregulates inflammation, pre-
vious studies have demonstrated that TLR4 expression is 
significantly reduced in macrophages and endothelial cells 
treated with androgens [25]. Moreover, androgen supple-
mentation inhibited increased expression of TLR4 in cas-
trated animals [26]. Therefore, we hypothesized that DHT 
might inhibit the pathogenesis of neuroinflammation in 
microglia cells through TLR4-related signaling pathways. 
TLR4 mediates inflammation through downstream signa-

Fig. 3. Administration of DHT attenuates systemic neuroinflamma-
tion after SCI. (A) Representative IF of IBA-1 (green) in Sham, SCI 
and SCI+DHT at 3 days post-SCI, (magnification: 200×). (B) Repre-
sentative IHC of p-p65 and p-p38 in Sham, SCI and SCI+DHT at 3 
days post-SCI, (magnification: 400×). (C-E) Representative ELISA of 
TNF-α, IL-1β and IL-6 in Sham, SCI and SCI+DHT group at 3 days 
post SCI. (E) Quantification of Sirt-1 protein level. “***” P<0.001, 
“**” P<0.01 and “*” P<0.05 vs. control group and “###” P<0.001, 
“##” P<0.01 and “#” P<0.05 means vs. LPS group with statistical 
significance.

Fig. 4. Effect of DHT mitigates glial accumulation and fibrosis focus 
in injured site. (A) Representative IF of IBA-1 (green) and GFAP (red) 
in Sham, SCI, SCI+DHT group at 28 days post-SCI, (magnification: 
200×). (B) Representative IF of fibronectin in Sham, SCI, SCI+DHT 
group at 28 days post SCI, (magnification: 200×). (C) Representative 
BMS scores in Sham, SCI, SCI+DHT group at 1, 3, 7, 14, and 28 days 
post-SCI. “###” P<0.001, “##” P<0.01 and “#” P<0.05 means vs. LPS 
group with statistical significance.
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ling pathways NF-κB and MAPKs [27]. Consistent with 
previous findings, DHT inhibited phosphorylation of 
NF-κB pathway and subsequent inflammatory responses. 
However, we further found that DHT inhibited phospho-
rylation of the TLR4-independent NF-κB p65 and MAPK 
p38 pathways in LPS-treated microglia and mouse spinal 
cord after SCI. Meanwhile, multiple studies have shown 
that DHT inhibits the expression of several MAPKs pa-
thways, such as JNK, p38 and ERK signaling, in vitro and 
in vivo. In the current study, we verified the poor locomo-
tor function in mice following trauma, however, treatment 
with DHT improved the recovery of locomotor function 
in SCI mice. Earlier studies likewise showed the neuro-
protective role of DHT in LPS-induced acute encephalitis, 
in which cognitive impairment was ameliorated via DHT 
[28]. However, the mechanism concerning DHT reducing 
glial scar and fibrosis is still unknown and needs to be in-
vestigated in further studies. In summary, DHT treatment 
reduces post-SCI neuroinflammation through TLR4-me-
diated NF-κB and MAPK-P38 signaling pathways. The 
results implicate that the neuroprotection of DHT in SCI 
model improves behavioral function and DHT administra-
tion may be a selection of adjuvant therapy or drug com-
bination to acute neuroinflammation in early phase of SCI.

5. Conclusion
The present research certifies that DHT reduces in-

flammation response in LPS-induced microglia and SCI 
mice, which inhibits NF-κB and MAPK-P38 signaling pa-
thways. The neurohistology and behavioral recovery are 
thereby improved following DHT administration in SCI.
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