
35Copyright © 2014. All rights reserved.

Efficiency of mitochondrially targeted gallic acid in reducing brain mitochondrial 
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Abstract
Oxidative stress is associated with mitochondrial impairments. Supplying mitochondria with potent antioxidants can reduce oxidative stress-induced mitochondrial 
impairment. Gallic acid can be used to reduce oxidative burden in mitochondria. In order to increase the bioavailability of gallic acid inside the mitochondria we 
synthesized mitochondrially targeted gallic acid and explored its preventive effects against sodium nitroprusside induced oxidative stress in isolated mitochondria. 
Our observations revealed an increase in oxidative stress,decrease in reduced glutathione in mitochondria and increase in the mitochondrial permeability pore tran-
sition due to sodium nitroprusside treatment. Pre-treatment of gallic acid and mitochondrially targeted gallic acid to sodium nitroprusside treated mitochondria not 
only significantly reduced the oxidative stress but also prevented mitochondrial permeability pore transition to a significant difference. Mitochondrially targeted 
gallic acid was found more effective in reducing oxidative stress and mitochondrial permeability pore transition than gallic acid. We conclude that mitochondrially 
targeted gallic acid can be used for preventing mitochondrial impairment caused by oxidative stress.
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Introduction

Mitochondria play key roles in cellular bioenerge-
tics and are termed as cell’s biochemical powerhouse. 
Apart from this important function, mitochondria carry 
out several other crucial metabolic processes (1) includ-
ing amino acid biosynthesis, fatty acid oxidation, urea 
cycle, lipid metabolism, homeostasis of cellular calcium 
ions and apoptosis (2). Therefore, it is unsurprising that 
mitochondrial dysfunction leads to variety of metabolic 
impairments such as reduced ATP production, impaired 
calcium buffering, accumulation of metabolic inter-
mediates and increased generation of reactive oxygen 
species (ROS) (3) and reactive nitrogen species (RNS). 
Increased production of ROS and RNS can initiate a 
number of damaging effects in the organelle including 
lipid peroxidation (LPO) and protein oxidation of mito-
chondrial membranes. During many neurodegenerative 
conditions oxidative damage in the mitochondria can be 
referred as an etiological factor of brain degeneration 
(4). 

The brain is highly susceptible to oxidative damage 
because of high metabolic rate, high oxygen consump-
tion rate, and comparative scarcity of antioxidant 
enzymes (5). One of the most evident ways to reduce 
the oxidative damage in neurodegenerative disease is 
through the use of effective antioxidants. Although se-
veral conventional antioxidants such as vitamin E and 
vitamin C (6) and natural plant extracts such as Gin-
kgo biloba extract (7, 8) have been found to reduce 
mitochondrial oxidative damage in neurodegenerative 
diseases, but their efficiency is restricted because they 
do not accumulate within mitochondria (9). Thus, mito-
chondrially targeted antioxidants need to be developed 

which can easily pass through mitochondrial membrane 
(10) and preserve mitochondrial functions. Since mito-
chondria are the cytoplasmic organelles that are highly 
negatively charged so that the antioxidant compounds 
conjugated with mitochondrially targeted positively 
charged cations can be used to target mitochondria (11). 
In various studies including our present study lipophi-
lic triphenylphosphonium ion (TPP) is used as a posi-
tively charged cation to target mitochondria (12, 13). 
TPP functions as an excellent vehicle to deliver antioxi-
dants to mitochondria because of its property to rapidly 
permeate mitochondrial membrane and to accumulate 
inside mitochondria (14). This accumulation of TPP 
conjugated antioxidants inside mitochondria enhances 
the efficiency of antioxidants against oxidative stress 
(15).

Sodium nitroprusside (SNP) is a potent nitric oxide 
(NO) donor (16, 17) that reacts with ROS and pro-
duce cytotoxic RNS. A biochemical and pharmacolo-
gical study have shown that plant derived polyphenols 
play important roles in improvement of mitochondrial 
functioning by neutralizing ROS (18, 19). Gallic acid 
(GA; 3,4,5-trihydroxybenzoic acid) is a naturally oc-
curring polyphenol widely distributed throughout the 
plant kingdom (20, 21). A large family of plants such 
as strawberries, pineapples, bananas, lemons, red and 
white wines, gallnuts, sumac, witch hazel, tea leaves, 
oak bark, and apple peels contain GA (22, 23). GA is 
known to exert antioxidant, anti-bacterial, anti-viral, 
anti-inflammatory, anti-proliferative, antitumorigenic, 
antimutagenic and antimelanogenic activities via inhi-
bition of tyrosine kinase activity (23 – 27). The antioxi-
dant property of GA can prevent mitochondrial mem-
brane permeability transition (MPT) and exert cyto-
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protective role in brain cells (28). However, natural GA 
derived from plants has less significance to the multi-
cellular systems because it lacks hydrophobicity which 
enables the antioxidant to reach the mitochondrial sites. 
Therefore, in the present study GA was chemically 
modified to specifically target the mitochondria. The 
results of the present study show that mitochondrially 
targeted GA (mt-GA) reduces brain mitochondrial nitric 
oxide and oxidative stress induced by SNP and thus pro-
tect the MPT.

Materials and methods

Chemicals
TPP, HCl, ethyl acetate, ethanol, sodium hydroxide 

(NaOH) were purchased from HiMedia Laboratories 
(Mumbai, India). Potassium dihydrogen orthophos-
phate (KH2PO4), dipotassium hydrogen orthophosphate 
(K2HPO4), metaphosphoric acid, sodium chloride and 
ethylene diamine tetra acetate (EDTA) were obtained 
from Merck, India. Streptomycin sulphate, GA, tri-
chloroacetic acid (TCA), 5,5’-dithiobis 2-nitrobenzoic 
acid (DTNB) and di-nitrophenyl-hydrazine (DNPH) 
were obtained from Sigma Chemical Company Inc. (St. 
Louis, MO, USA).

Experimental Animal
Adult Swiss albino mice (Mus musculus albinus) 

weighing 25-30 g were obtained from College of Vete-
rinary Science and Animal Husbandry,Mhow, India. All 
studies using these mice were approved by the research 
committee of Vikram University in accordance with the 
International guidelines for the care and use of labora-
tory animals. All animals were housed at 25 ± 1°C with 
12 hr light / dark cycle.

Mitochondrial preparation
The animals were euthanized by decapitation. Brains 

were rapidly excised and placed into ice cold isolation 
medium (0.25 M sucrose). Tissues were weighed, finely 
minced and homogenized in isolation medium (10% 
w/v) using glass homogenizer. Mitochondria were isola-
ted from normal mice brain by conventional differential 
centrifugation method as described (29, 30).The pellet, 
i.e., the mitochondrial fraction, was re-suspended in 1 
ml isolation buffer to obtain approximately 4 mg mito-
chondrial protein/ml. The experiments were performed 
immediately after purification of the mitochondria.

Synthesis of targeted antioxidant
Mitochondrially targeted GA was synthesized by 

covalent linkage of GA with a lipophilic cation, TPP as 
described (31, 32). TPP was reacted with a brominated 
precursor to obtain the lipophilicity. To synthesize tar-
geted derivative of GA, a solution of lipophilic cation 
and the GA was refluxed and evaporated to obtained 
mt-GA.

Mitochondrial treatments
Mitochondria were incubated in a reaction mixture 

containing 120 mMKCl, 2mM phosphoric acid and 
15 mM Tris. The experiment was performed in four 
groups. The first group served as control. In the second 
group, mitochondria were incubated with SNP (0.4 µM) 

for 30 minutes. In the third group, mitochondria were 
pre treated with five different concentrations of GA (i.e. 
100 µmol to 500 µmol) for 15 minutes prior to incuba-
ting with SNP for 30 minutes. The incubation mixture 
of the mitochondria for the fourth group was the same 
except mt-GA was used in place of GA. Mitochondria 
were energized by pyruvate/malate (10/ 5 mM) before 
incubation with SNP, GA and mt-GA.

Sample preparation for assays 
After incubation, different groups of mitochondria 

were assayed by using suitable buffers. The 0.05 M 
phosphate buffer was used for LPO assay. The phos-
phate buffer (100 mM; pH 7.4) containing 0.1% digito-
nin was used for protein carbonyl assay, and 0.1 M cold 
metaphosphoric acid containing 0.02% EDTA and 0.1 
mM DTNB for reduced glutathione (GSH) assay.

Quantitation of NO
Nitric oxide was determined spectrophotometrically 

by measuring the accumulation of its stable degradation 
products, nitrite and nitrate. Nitrate was reduced to ni-
trite by incubating mitochondria in the presence of 0.1 
unit/ml nitrate reductase, 50 mM NADPH, and 5 mM 
FAD for 15 min at 37 °C. NADPH is oxidized to avoid 
interference with the nitrite determination on comple-
tion of nitrate reduction and for this purpose samples 
were incubated with lactate dehydrogenase (10 units/
ml) and sodium pyruvate (10 mM) for 5 min at 37 °C. 
All incubations were performed in red polypropylene 
tubes to protect the light-sensitive nitrate reductase. To-
tal nitrite was then determined spectrophotometrically 
by using the Griess reaction as we have described (33).

Immunoblotting
Samples were immunoblotted against monoclonal 

anti-nitrotyrosine antibody (Alexis, San Diego, CA, 
USA) for detection of protein tyrosine nitration as we 
have described (30, 34).

Lipid peroxidation (LPO)
LPO was determined by measuring thiobarbituric 

acid reactive substance (TBARS) in terms of malo-
naldehyde equivalent (MDA) using the molar extinction 
coefficient of 1.56 x 105 min-1.cm-1 as described(35). 
Briefly, 0.1 ml of mitochondrial sample was mixed with 
0.2 ml of 8.1% SDS, 1.5 ml 20% glacial acetic acid, and 
1.5 ml of 0.8% thiobarbituric acid (TBA). Following 
these additions, tubes were mixed and heated at 95 °C 
for 60 min in a water bath, and cooled under tap water 
before mixing with 1 ml distilled water and 5 ml mix-
ture of n-butanol and pyridine (15: 1). The mixture was 
centrifuged at 2,200 x g for 10 min. The TBARS value 
was determined by measuring the absorbance of upper 
organic layer at 532 nm. The results were expressed as 
nmol TBARS/mg protein.

Protein Carbonyl Content
Protein carbonyl content was assessed according to 

Levine et al. (36) with some modifications. Briefly, in a 
0.5 ml of mitochondrial sample, streptomycin sulphate 
solution (10% w/v) is added to a final concentration of 
1% to precipitate DNA.The solution is mixed and left 
to stand for 15 min at room temperature, and then it is 
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cal significance.

Results

Oxidative stress in isolated mitochondria was in-
duced by treating mitochondria with an NO donor, SNP. 
Fig. 1A, shows an increase in NO in the mitochondria 
treated with SNP. Prior incubation of mitochondria with 
different concentrations of GA and mt-GA resulted in a 
significant reduction of NO level in comparison to SNP 
treated mitochondria.

To elucidate the effects of increased NO on mito-
chondrial peroxynitrite formation and oxidative stress, 
we performed western blot of nitrated proteins. As 
shown in Fig. 1B, mitochondria incubated with SNP, 
express detectable levels of protein tyrosine nitration. 
After pre-incubation of mitochondria with GA, a de-
crease in mitochondrial protein tyrosine nitration was 
obtained. Pre-incubation of mitochondria with mt-GA 
resulted in further decline in mitochondrially nitrated 
proteins.

Increased oxidative stress in the mitochondria causes 
peroxidation of membrane lipids. So next we tested the 
effect of SNP on mitochondrial LPO. As shown in Fig. 
2A, the LPO was significantly increased by incubating 
mitochondria with SNP. The level of LPO increased 
from 0.18 ± 0.01 nmol TBARS/mg proteins in control 
to 0.96 ± 0.04 nmol TBARS/mg proteins in SNP-treated 
mitochondria. Pre-treatment of brain mitochondria with 
different concentration of GA and mt-GA deliberated 
the significant reduction of LPO as compared to group 
that were treated with SNP alone. These results suggest 
that mt-GA is more effective than GA in reducing SNP-
induced LPO.

 As mitochondrial proteins are considered to be one 
of the targets of oxidative damage, so testing the effect 
of SNP on protein carbonylation was mandatory, and 
our results revealed an increase in protein carbonyl con-

centrifuged at 2,800 x g for 10 min at room tempera-
ture. The supernatant is removed and 0.8 ml is divided 
equally between two test tubes. Now DNPH (1.6 ml, 
10 mM in 2 M HCl) is added to 1 tube and 1.6 ml of 
2M HCl to the other tube. The tubes are then incuba-
ted for 1 hr. at room temperature and then the protein is 
precipitated by adding an equal volume of 20% trichlo-
roacetic acid (TCA) and leaving them for 15 min. The 
protein is centrifuged at 3,400 x g for 10 min at room 
temperature and the pellet is washed with 1.5 ml of an 
ethyl acetate: ethanol mixture (1:1, v/v) to remove ex-
cess DNPH. The final protein pellet is dissolved in 1.25 
ml of 6 M guanidine hydrochloride and the absorbance 
of both DNPH and HCl solution were measured at 370 
nm in a Perkin-Elmer UV spectrophotometer. A stan-
dard curve was obtained by using bovine serum albumin 
(BSA) and included in each assay to determine linearity 
and the extent of derivatization. The results of carbo-
nyl contents were expressed in terms of nmol carbonyl 
group/mg protein.

Reduced glutathione (GSH) 
The GSH content of tissue homogenates was quanti-

tated as described (37), involving the spectrophotome-
tric assessment of the formation of 5-thio-2-nitroben-
zoate from DTNB in the presence of NADPH and gluta-
thione reductase. Briefly, 0.5 ml mitochondrial samples 
were mixed with1.5 ml of 0.1 M ice cold metaphospho-
ric acid and centrifuged at 16,000 x g for 15 min at 4 ºC. 
The supernatant (0.5 ml) was equilibrated with 4 ml of 
ice cold 0.1 mM solution of DTNB in 0.1 M phosphate 
buffer pH 8.0 and the optical density was obtained at 
412 nm in a Perkin-Elmer UV-Spectrophotometer. A ca-
libration curve was prepared by using GSH as standard.

Determination of membrane permeability transition 
(MPT; mitochondrial swelling)

Isolated mitochondria (0.5 mg protein) were re-sus-
pended in 2 ml Hank’s balanced salt solution (HBSS; 
5.4 mM KCl, 0.44 mM KH2PO4, 0.34 mM Na2HPO4, 
0.49 mM MgCl2, 0.41 mM MgSO4, 132 mMNaCl, 10 
mM HEPES, pH 7.3, and pyruvic acid (10 mM) / mal-
late (5 mM). MPT was induced in the mitochondria by 
adding 3µM CaCl2

.Experiments were performed on iso-
lated mitochondria in different test tubes at room tem-
perature with SNP (1.6 µmol), SNP + GA (100 µmol to 
500 µmol) and SNP + mt-GA (100 µmol to 500 µmol). 
Mitochondrial swelling was estimated from the changes 
of light scattering at 540 nm measured in mitochondrial 
suspensions (0.5 mg of protein in 2 ml) as described 
(38).

Assay of Total Protein
Total protein content of mitochondrial fractions was 

measured by Folin-phenol reaction as described by 
Lowry et al. (39). A standard curve of BSA was included 
in each assay to determine linearity and to measure the 
extent of derivatization.

Statistical Analysis
All data are expressed as mean ± S.E. Statistical com-

parisons were made relative to the appropriate control 
group using one way analyses of variance (ANOVA). 
The 0.05 level was selected as point of minimal statisti-

Figure 1. A: Showing nitric oxide levels (nitrite/nitrate; mmol) in 
mice brain mitochondria treated with SNP (0.4 µmol), SNP (0.4 
µmol) + GA (100 µmol to 500 µmol), SNP (0.4 µmol) + mt-GA 
(100 µmol to 500 µmol). *Significantly different from control 
(p<0.05; n=5), #significant difference from SNP treated mitochon-
dria (p<0.05; n=5). $Significant difference from GA (p<0.05; n = 5). 
B: Tyrosine nitration of mitochondrial proteins in mice brain mito-
chondria treated with SNP (0.4 µmol), SNP (0.4 µmol) + GA, SNP 
(0.4 µmol) + mt-GA.
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measured the MPT in mitochondria treated with SNP. 
Our results illustrate that treatment with SNP increases 
the MPT (Fig. 3B). Pre-incubation of mitochondria with 
GA and mt-GA prevents the MPT induced by SNP. As 
shown in Fig. 3B, mt-GA was more effective in preven-
tion of MPT than GA.

Discussion

Mitochondria are the major source of ROS and, thus 
may become easy target of damage caused by various 
oxidants and oxidative metabolism. Mitochondrial ROS 
production appears to be an essential mediator of many 
age related diseases. One of the most prominent mecha-
nisms to counter the oxidative stress and mitochondrial 
impairment is through the use of effective antioxidants.  
Supplying mitochondria with effective lower or higher 
concentration of antioxidants may have beneficial ef-
fects under mild or extreme oxidative stress conditions. 
GA, a plant polyphenol derived from various fruits and 
vegetables that exhibits antioxidant activity in vivo and 
in vitro (25), may be a reliable antioxidant to neutralize 
ROS in the mitochondria. To enhance the efficiency of 
GA against ROS in mitochondria, in the present study 
we synthesized mt-GA that can rapidly enter and accu-
mulate inside the mitochondria and reduce oxidative 
stress and mitochondrial impairment. In order to induce 
oxidative stress under laboratory conditions the mito-

tent in SNP treated mitochondria (15.49 ± 1.20 nmol/
mg protein) compared to control (4.92 ± 0.70 nmol/mg 
protein). The mitochondria pre-incubated with GA and 
mt-GA showed lower protein carbonyl content com-
pared to mitochondria that were only treated with SNP.  
As shown in Fig. 2B, the mt-GA decreases protein car-
bonylation more competently than GA.

Mitochondrial GSH is the most abundant thiol that 
serves as major reducing agent against oxidative da-
mage.  As shown in Fig. 3A, SNP treatment caused a 
significant (p < 0.05) decrease in GSH levels (29.53 ± 
1.4 µmol/g) in the mitochondria as compared to control 
(39.72 ± 0.72 µmol/g). Pre-incubating mitochondria 
with GA and mt-GA increased the level of GSH.Howe-
ver, as shown in the Fig. 3A, mt-GA was most effica-
cious than GA in preserving the GSH content in SNP 
treated mitochondria.

MPT is a non-selective mitochondrial inner mem-
brane permeabilization and, a catastrophic event pre-
ceded by oxidative stress. Increased MPT is regarded 
as the primary mediator of cell death. Therefore, we 

Figure 2. A:  Showing lipid peroxidation (LPO; nmol TBARS/mg 
protein) in mice brain mitochondria (0.1 ml) treated with SNP (0.4 
µmol), SNP (0.4 µmol) + GA (100 µmol to 500 µmol), SNP (0.4 
µmol) + mt-GA (100 µmol to 500 µmol). *Significantly different 
from control (p<0.05; n=5), #significant difference from SNP trea-
ted mitochondria (p<0.05; n=5). $Significant difference from GA 
(p<0.05; n = 5). B:  Showing protein carbonyl (nmol /mg protein) in 
mice brain mitochondria (0.5 ml) treated with SNP (0.4 µmol), SNP 
(0.4 µmol) + GA (100 µmol to 500 µmol), SNP (0.4 µmol) + mt-
GA (100 µmol to 500 µmol). *Significantly different from control 
(p<0.05; n=5), #significant difference from SNP treated mitochon-
dria (p<0.05; n=5). $Significant difference from GA (p<0.05; n = 5).

Figure 3. A:  Showing reduced glutathione (GSH; µmol/g) in mice 
brain mitochondria (0.5 ml) treated with SNP (0.4 µmol), SNP (0.4 
µmol) + GA (100 µmol to 500 µmol), SNP (0.4 µmol) + mt-GA (100 
µmol to 500 µmol). *Significantly different from control (p<0.05; 
n=5), #significant difference from SNP treated mitochondria (p<0.05; 
n=5). $Significant difference from GA (p<0.05; n = 5). B:  Showing 
mitochondrial permeability transition (MPT; -ΔOD) in mice brain 
mitochondria (0.5 mg of protein) treated with SNP (0.4 µmol), SNP 
(0.4 µmol) + GA (500 µmol), SNP (0.4 µmol) + mt-GA (500 µmol). 
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of GA against protein carbonyl were also reported in 
left ventricular tissue of rat heart that was infused with 
Advanced Glycation End Products (47).

Oxidative stress induced MPT is an important bio-
marker of mitochondrial impairment. MPT occurs due 
to the opening of a mitochondria permeability transition 
pore in the inner mitochondrial membrane. In the pre-
sent study, increased MPT was observed when isolated 
mitochondria were incubated with SNP. This suggests 
occurrence of mitochondrial functional impairment due 
to the SNP treatment. Antioxidant can prevent MPT and 
polyphenols like GA are considered as effective antioxi-
dants for the prevention of oxidative stress. GA and 
mt-GA served as effective antioxidants against SNP-in-
duced MPT. The mt-GA was found more effective in 
preventing MPT than GA.

GSH is the most abundant mitochondrial antioxidant 
and critical for regulating mitochondrial redox environ-
ment. Increased level of oxidized disulphide glutathione 
GSSG reflects oxidized environment (50). Depletion of 
GSH can disturb redox homeostasis and impair mito-
chondrial functions. The present study shows that SNP 
significantly obstruct this antioxidant defense machi-
nery of mitochondria. GA and mt-GA significantly in-
creased the level of GSH. According to Mitic et al. this 
effect of GA is due to its hydrogen donating nature (51) 
that retains GSH in its reduced form. 

We conclude that SNP induces oxidative stress and 
mitochondrial impairment and that GA and mt-GA 
served as effective antioxidants in lowering SNP-in-
duced mitochondrial oxidative stress and mitochondrial 
impairment. Although the effectiveness of mt-GA was 
not tested in vivo in the present study but in isolated 
brain mitochondria the mt-GA was found more effec-
tive in preventing oxidative burden and mitochondrial 
impairment than GA. Thus, targeting mitochondria with 
mitochondrially targeted antioxidants can be the prefer-
red strategy to reduce oxidative burden in these cellular 
power houses.
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