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1. Introduction
Spinal cord injury (SCI) is a devastating neurological 

disorder characterized by high disability and mortality 
rates, affecting the life quality of patients and bringing huge 
burden to society (1). It is reported with approximately 
250,000-500,000 new cases annually worldwide (2). SCI 
is divided into primary and secondary injury, and primary 
injury is the mechanical damage to the spinal cord and 
the consequent secondary injury is the following impai-
red neuronal homeostasis and tissue destruction induced 
by the local microenvironment alteration, and the patho-
physiological mechanisms such as autophagy, inflamma-
tory response, radical accumulation, neuronal death and 
blood-brain barrier (BBB) disruption are involved in this 
process (3-5). Currently, the effective management of SCI 
lacks consensus (6). Early surgical decompression, blood 
pressure augmentation, corticosteroids and invasive spinal 
cord pressure monitoring are suggested for SCI patients, 
with limited effects for the complete restoration of the spi-
nal cord function (7). Therefore, it is imperative to deepen 
the understanding of the underlying mechanism in the pro-
cess of SCI and identify promising targets for SCI therapy.

The exploration and identification of biomarkers for 
SCI have attracted increasing attention in recent years. 

By targeting the key factors involved in the pathological 
changes in the acute phase of SCI, various neuroprotective 
strategies have been investigated to restrain progressive 
damage to the spinal cord. Studies revealed that growth-
associated factors such as PDGF, VGF, BDNF, FGF and 
BMPs are upregulated in the process following SCI of 
the neural connection reestablishment (8). Neurosteroid 
progesterone is revealed to improve recovery after SCI in 
clinical trials by elevating BDNF expression (9). Inflam-
matory factors such as TNF-α, IL-1β an IL-6 are reported 
to reach the peak at 6-12 h following SCI and induce the 
function loss of endothelial cells and the astrocytes (10). 
Methylprednisolone is used for SCI treatment and is indi-
cated to promote neurological recovery by reducing the 
inflammatory factors including TNF-α, IL-1 and IL-6 (11). 
Macrophages play critical roles in the process of SCI, and 
the M2 subtype is at low level after SCI. It is reported that 
deficiency of CD36, the most enriched lipid transporter in 
macrophages reduces lipid content and facilitates functio-
nal recovery in SCI mouse models (12, 13). Despite the 
increasing therapeutic strategies, the translation into clini-
cal practice remains further exploration.  

Bioinformatics analysis is widely used to evaluate the 
expression pattern and biological functions of genes as 
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well as the potential regulatory mechanisms involved in 
diverse diseases, SCI included (14). As an effective ap-
proach to exploring the pathogenesis in clinical diagnosis 
and pharmacological study, bioinformatics analysis has 
provided numerous targets and biomarkers for SCI dia-
gnosis and therapy (15). 

In our work, bioinformatics analysis was conducted to 
analyze the RNA-seq data and explore the hub genes and 
related key pathways in SCI. DEGs in SCI were explored 
and functional analysis was applied for further evaluation. 
Hub genes were selected using the Protein-Protein Interac-
tion (PPI) network. The results of this study might provide 
promising therapeutic targets and deepen our understan-
ding of the molecular mechanism in SCI.

2. Materials and Methods
2.1. Microarray Data and Screening DEGs 

Two microarray datasets (GSE45006, GSE45550) 
based on the GPL1355 platform ([Rat230_2] Affymetrix 
Rat Genome 230 2.0 Array) were obtained from the NCBI 
GEO database (https://www.ncbi.nlm.nih.gov/geo/). The 
above-mentioned two datasets were merged and batch-
corrected by the “sva” package in R software. The runU-
MAP function in R software was used for the visualization 
of the batch-removing effects. The DEGs were screened 
with the R“limma” package with |(log2FC)| >1 and p va-
lue less than 0.05 as the threshold value.

2.2. Construction of Weighted gene co-expression 
network analysis (WGCNA)

WGCNA was applied to investigate the correlation 
between genes and identify modules closely related to the 
phenotype of samples in the two datasets using the “WGC-
NA” R package. The soft thresholding power (β) was cal-
culated by network topology analysis, and the adjacency 
was computed followed by conversion into the topological 
overlap matrix. Genes with similar patterns were assigned 
into modules using the average linkage hierarchical cluste-
ring with TOM-based dissimilarity measure. The correla-
tion of gene modules and phenotypes (control, SCI) were 
calculated with the Pearson correlation coefficients. The 
module eigengene dissimilarity was then calculated, and 
the eigengene network was finally visualized. Key genes 
were defined with large Module Membership and Gene 
Significance in the modules (16). The key genes related 
to SCI were intersecting genes of DEGs selected by the 
limma package and key genes selected by the WGCNA 
using the Venn diagram web tool. 

2.3. Functional Enrichment analysis 
The biological functions of selected key genes in SCI 

were explored with the Gene Ontology (GO) analysis for 
biological process (BP), cellular component (CC), as well 
as molecular function (MF) using clusterProfiler R pac-
kage. KEGG enrichment analysis was also performed with 
the same package. The results were visualized using the 
org. Hs.eg.db and GO plot R. Metascape online tool was 
also used for the enrichment analysis of the selected key 
genes associated with SCI.

2.4. Identification of hallmark pathways via gene set 
variation analysis (GSVA)

GSVA analysis was conducted to explore the biologi-
cal functions of the selected key genes in SCI with the 

“GSVA” and “Msigdbr” packages. The cut-off criteria are 
set as P. adjust < 0.05, gene size greater than or equal to 50 
and |enrichment score (ES) | >2. The top ten most signifi-
cantly enriched pathways were selected and visualized in 
the results.

2.5. Construction of PPI (protein-protein interaction) 
network and identification of hub genes

STRING (https://string-db.org/) database was applied 
to predict the direct and indirect relation between proteins. 
The Cytoscape v 3.8.2 was applied for the visualization of 
the PPI network. The top 12 genes ranked by degree were 
selected as hub genes in SCI using the CytoHubba plug-in.

2.6. Statistical analysis and prognostic value of hub 
genes

The ROC curves were established to calculate the AUC 
and 95%CI of the six selected hub genes in SCI using SPSS 
V 26.0 software (IBM Corporation, Armonk, NY, USA).

3. Results
3.1. The data characteristics in the two datasets of spi-
nal cord injury 

GSE45006 and GSE45550 datasets were downloaded 
from the GEO database, merged and batch corrected, and 
the inter-batch differences were eliminated. As shown in 
the plot of density, the expression value of the two data-
sets concentrated on zero after normalization, indicating 
the general consistency between the samples in the two 
datasets for further analysis (Figure 1A-B). Consistently, 
the box plot displayed that the distribution of data in the 
two datasets became even after data normalization (Figure 
1C-D). Consistently, Uniform Manifold Approximation 
and Projection (UMAP) displayed that data of samples 

Fig. 1. Expression distribution in the two datasets after norma-
lization. Density plot of samples in the two datasets (GSE45006, 
GSE45550) (A) before and (B) after batch-normalization. Box plot 
displaying the expression distribution (C) before or (D) after remo-
ving batch. (E-F) UMAP of data in the two datasets (E) before and (D) 
after batch-normalization.

https://string-db.org/
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in these two datasets were intermingled (Figure 1E-F). 
Overall, these results suggested that the data source of our 
study was reliable.

3.2. Identification of DEGs and construction of WGC-
NA

The differentially expressed genes (DEGs) in spinal 
cord injury were then explored in the two datasets. The 
results showed that totally 551 DEGs were screened out 
under |(log2FC)| >1 and p < 0.05, and the expression pat-
tern of up-regulated and down-regulated genes in spinal 
cord injury was shown in Figure 2A and B. WGCNA was 
applied for the cluster analysis of the DEGs in SCI. The 
network topology analysis was conducted for soft-thres-
holding power ranging from 1-30 and confirmed the rela-
tively balanced scale independence and mean connectivity 
of the WGCNA. We set the power value (β) of 24 for fur-
ther analysis because the scale-free topology fit index rea-
ched 0.89 with relatively high connectivity (Figure 2C-D).

3.3. Identification of key genes in SCI
The gene network was constructed and the modules 

were identified. Genes were clustered by a TOM-based 
dissimilarity measure. The soft thresholding power (β) 
was set at 24, and the genes were totally divided into 14 
modules with similar modules merged, each with a unique 
color (Figure 3A). The connectivity of eigengenes was 
then analyzed, which provides information of the relation 
between the pairwise gene coexpression modules. The 14 
modules were mainly clustered into 2 clusters, and the 
adjacencies between modules were shown in the heatmap 
(Figure 3B). The correlation of different modules with 
the phenotype is shown in Figure 3C. We found that the 
white (Cor=-0.39, p=6.7e-3), cyan (Cor=-0.62, p=2.4e-6) 
and grey (Cor=-0.51, p=2.4e-4) modules were negatively 
correlated with SCI, while red (Cor=0.41, p=3.7e-3), dar-
korange (Cor=0.4, p=4.4e-3), darkred (0.47, 6.9e-4) and 
lightcyan (Cor=0.37, p=8.9e-3) modules were positively 
correlated with SCI. As shown in the Venn diagram, the 
551 DEGs intersected with the 1236 genes in the co-ex-
pression modules of WGCNA, and totally 111 key genes 
in SCI were identified in the intersection for the following 
analysis (Figure 3D).

3.4. Identification of key biological pathways
GO analysis and KEGG analysis of the selected key 

genes were performed and the results indicated that the 
selected key genes were primarily enriched in the wound 
healing, collagen fibril organization and regulation of 
phosphatidylcholine metabolic process in terms of BP, col-
lagen-containing extracellular matrix, extracellular matrix 
and external encapsulating structure in terms of CC, pla-
telet-derived growth factor binding, extracellular matrix 
structural constituent and mRNA methyltransferase acti-
vity in terms of MF. Moreover, KEGG analysis indicated 
that these key genes associated with SCI were primarily 
enriched in the pathways such as PPAR signaling, protein 
digestion and absorption and ECM-receptor interaction 
(Figure 4A-B). The network of specific genes with the 
terms and pathways of enrichment analysis was presented 
in Figure 4C. Then Gene set enrichment analysis (GSEA) 
revealed that for the selected key genes, the TYROBP 
Causal Network In Microglia, Cell Cycle, Resolution of 
Sister Chromatid Cohesion, Separation of Sister Chroma-

Fig. 4. Identification of key biological pathways enriched by key 
genes. (A) The bubble chart and (B) bar graph of the top three terms 
enriched by hub genes in the BP, CC, MF and KEGG. (C) The network 
of hub genes and terms and pathways based on the GO and KEGG 
analysis. (D-G) Representative pathways enriched in the selected hub 
genes were identified by GSEA.

Fig. 2. Identification of DEGs and construction of WGCNA. (A) 
Volcano plot and (B) Heatmap of the differentially expressed genes 
in SCI. (C) Scale independence and (D) Mean connectivity for the 
WGCNA network. 

Fig. 3. Identification of key genes in SCI. (A) Clustering dendro-
grams of genes, with dissimilarity according to topological overlap, 
together with assigned module colors. (B) Heatmap displaying the 
eigengene adjacency. (C) Correlation between the modules and the 
phenotypes. (D) Venn diagram of the key genes in SCI selected based 
on the limma package and WGCNA
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tids, Cell Cycle Checkpoints, Mitotic Metaphase and Ana-
phase, Cell Cycle Mitotic, Signaling By Interleukins were 
primarily enriched (P. adj<0.001) (Figure 4D-G).

3.5. Construction of the PPI network and the selection 
of hub genes

Based on the analysis using Metascape, we found that 
the hub genes were mainly enriched in terms such as ex-
tracellular matrix organization, wound healing, regulation 
of phosphatidylcholine metabolic process focal adhesion 
and regulation of neutrophil apoptotic process (Figure 5A-
C). Protein-protein interaction network was generated as 
shown in Figure 5D. The top 12 mRNAs ranked by de-
grees of connectivity were screened and identified as hub 
genes in SCI (Figure 5E).

3.6. Diagnostic value of the hub genes
Based on the ROC curves, we evaluate the stability of 

the selected disease targets. We found that the Cd44 has the 
highest diagnostic value (AUC= 0.913, CI: 0.829,-0.997), 
followed by Timp1 (AUC=0.897, CI: 0.809,-0.986), Loxl1 
(AUC=0.858, CI: 0.751,-0.965), Col6a1 (AUC=0.839, CI: 
0.686,-0.993), Col3a1 (AUC= 0.803, CI: 0.640,-0.965), 
Col5a1 (AUC=0.784, CI: 0.641,-0.927) in spinal cord in-
jury (Figure 6A-F).

4. Discussion
Spinal cord injury is a devastating neurological condi-

tion leading to severe neurological dysfunction and disa-
bility, affecting the physical and mental health, life quality 
as well as social participation of patients (17). The enhan-
cement of the neuroplasticity and tissue repair following 
SCI are key to the functional recovery of SCI patients 
(18). However, the effects of current treatment for SCI are 
still limited in neural regeneration, and understanding the 
underlying mechanisms in the process of SCI provides 
opportunities for the targeted therapy of SCI (19, 20). In 
this study, we identified 6 hub genes (Cd44, Timp1, Loxl1, 
Col6a1, Col3a1, Col5a1) and key biological mechanisms 
involved in the process of SCI based on bioinformatics 
analysis. Further analysis confirmed the prognostic value 
of the selected hub genes for SCI, which may provide pro-
mising biomarkers and therapeutic targets for SCI patients.

Based on the GSE45006 and GSE45550 datasets, we 
discovered 551 differentially expressed genes in SCI. 
Functional enrichment analysis indicated that the DEGs 
in SCI were significantly enriched in the pathways such 
as extracellular matrix (ECM), collagen-containing ECM, 
ECM structural constituent, collagen fibril organization, 
wound healing, protein digestion and absorption, and 
PPAR signaling pathway. Spinal cord ECM contains struc-
tural and communication proteins implicated in the repair 
and regeneration following SCI (21). ECM proteins such 
as laminin, collagen, and fibronectin are suggested to be 
associated with fibrotic scar formation and affect axon 
growth after SCI (22). Wound healing is a critical process 
in the central nervous system (CNS) injury, during which 
glial cells are moved to generate a protective barrier to 
seal the wound and reduce further tissue damage (23). The 
PPAR signaling pathway is reported to be increased and 
after SCI, which may cause enhanced bone resorption and 
related to the bone loss following SCI (24). Moreover, the 
platelet-derived growth factor has been demonstrated to 
improve the recovery after SCI in rodent models by pro-

moting cell survival and repair and improving locomotor 
function (25, 26). The results of GSEA showed that the 
key genes related to SCI were primarily enriched in the 
pathways such as TYROBP Causal Network In Microglia, 
Cell Cycle, Resolution of Sister Chromatid Cohesion, 
and signaling by interleukins. Microglia TYROBP plays 
a key role in brain homeostasis, and it is indicated that 
the TYROBP may be associated with the loss of markers 
of synaptic integrity in Alzheimer’s disease (27). Several 
bioinformatics analyses have also confirmed that Tyrobp 
is highly expressed after SCI and is a candidate key gene 
for SCI (28, 29). Cell cycle is activation is reported to be 
involved in the pathophysiologic process of neurodegene-
rative disorders such as Parkinson’s disease and Alzhei-
mer’s disease (30, 31), and it is also suggested to regulate 
the neuronal apoptosis and glial proliferation/activation 
after central nervous system (CNS) injury, SCI included 
(32).

Totally 6 hub genes (Cd44, Timp1, Loxl1, Col6a1, Co-
l3a1, Col5a1) in SCI were identified. CD44 is known as 
an ECM phosphoglycoprotein implicated in cell adhesion, 
chemoattraction as well as immunomodulation, and serves 
as a receptor for osteopontin OPN (33). Cd44 has been re-

Fig. 5. PPI network construction and identification of the hub 
genes. (A) GO analysis of the selected hub genes using Metascape. 
Enriched Ontology Clusters Colored by (B) Cluster ID or (C) p-Value 
based on the GO analysis. (D) PPI network of the selected genes. (E) 
Network of the top 12 key proteins was constructed and the color 
depth was related to the degree.

Fig. 6. Diagnostic value of the key disease targets. ROC curves 
showing the diagnostic value of (A) Cd44, (B) Col5a1, (C) Col3a1, 
(D) Loxl1, (E) Col6a1 and (F) Timp1 in spinal cord injury.
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ported to be upregulated in rat spinal cords after clip com-
pression injury, and it is suggested that Cd44 facilitates 
cell adhesion and glial cell attraction at the early stage fol-
lowing SCI to improve the recovery of injured spinal cords 
(34). Tissue inhibitors of metalloproteinases (TIMPs) is 
revealed to regulate the activities of MMPs, which break 
down inhibitory ECM molecules and significantly affect 
the axonal growth (35). Timp1 is suggested to be involved 
in tissue remodeling after dorsal root injury in a rat model 
and is a possible candidate for CNS axonal regeneration 
(36). As a growth factor, TIMP-1 is expressed to promote 
myelination or promote myelin repair in CNS (37). Loxl1 
as a member of the LOX family and an important enzyme 
in elastic fiber synthesis and homeostasis, is related to the 
regulation of tensile strength and structural integrity of 
various tissues (38). Studies have uncovered that Loxl1 
can catalyze the covalent cross-linking of ECM proteins 
collagen and elastin, which conduces to the ECM stiffness 
and mechanical properties (39-41). Col6a1 is upregulated 
in chronic spinal cord injury and is targeted by miR-330-
3p and co-expressed with lncRNA6032, which may be 
a candidate target for chronic SCI therapy (42). Col3a1 
encodes type I and III collagen in connective tissues and is 
differentially expressed between rostral and caudal regions 
in SCI rates and enriched in terms such as blood vessel 
development, response to mechanical stimulus and wound 
healing based on GO analysis (43). Col5a1 plays a role 
in ECM organization and is suggested as a biomarker to 
distinguish different SCI subtypes (44). The results of our 
study also indicate that these key genes associated with 
SCI are closely related to ECM organization, wound hea-
ling and elastic fibre formation, etc., and the ROC curves 
confirmed the diagnostic value of the six selected hub 
genes in SCI.

In conclusion, based on the two GEO datasets, the 
results of bioinformatics analysis found 551 differentially 
expressed genes in SCI and 111 key genes associated with 
SCI. Further analysis indicated that these key genes in SCI 
were enriched in the pathways related to ECM, wound hea-
ling and cell cycle, etc. Further analysis identified 6 hub 
genes in SCI, and the diagnostic value of these hub genes 
was verified using ROC curves. The results of our work 
may deepen the understanding of the potential mechanism 
in the process of SCI and contribute to the development of 
novel therapeutic strategies for SCI.
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