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Abstract

TGF-β is a mediator of lung fibrosis and regulates the alveolar epithelial type II cell phenotype.  TGF-β can induce epithelial 
mesenchymal transition of idiopathic pulmonary disease and cancer metastasis.  Peroxisome proliferator-activated receptor 
gamma co-activator 1-alpha (PGC-1 α) is a key metabolic regulator that stimulates mitochondrial biogenesis and promotes 
remodeling of muscle tissue to oxidative fiber-type composition.  Here, we report that the induction of TGF-β decreased 
mRNA expression of PGC-1α, and PGC-1 target genes, such as the transcription factors NRF-2, ERR-α, and PPAR-γ in lung 
epithelial A549 cells.  In addition, TGF-β led to the reduction of super oxide dismutase 2 (anti-oxidant enzyme), cytochrome 
C (electron transport chain in mitochondria), and MCAD (a mitochondrial β-oxidant enzyme) in A549 cells.  Together, 
our results suggest that TGF-β may suppress the transcriptional activity of the genes related to mitochondrial biogenesis or 
function.  This mechanism may provide a novel insight into the understanding of fibrosis disease. 

Key words:TGF-β; PGC-1α; mitochondrial biogenesis.

Article information

Received on April 24, 2012
Accepted on September 21, 2012

 Corresponding author 
Tel: + 82-515108133
Fax: + 82-515108134
E-mail: eunjungs93@gmail.com

Cellular & Molecular Biology                                                                             
http://www.cellmolbiol.com
Copyright © 2012. All rights reserved.

INTRODUCTION

TGF-β is a pleiotropic growth factor that plays an im-
portant role in cell proliferation, cell growth arrest, senes-
cence, apoptosis, and differentiation (21, 36).  TGF-β plays 
dual roles in cancer: first, acting as a tumor suppressor by 
preventing tumorigenesis in breast and prostate cancer (2), 
and second, enhancing the invasiveness and metastasis of 
tumor cells(17).  TGF-β also mediates epithelial-to-mesen-
chymal transition (EMT), which is a mediator for tissue 
fibrosis and tumor progression. EMT mediated by TGF-β 
which alters the epithelial properties results in fibrosis in 
the kidney, liver, or lung (10).

TGF-β is an important factor in the pathogenesis of fi-
brosis.  Asbestosis is a form of pulmonary fibrosis, which 
results from the entry of asbestos into the lung via inha-
lation.  Asbestos-induced fibrogenesis results in the pro-
duction of reactive oxygen species (ROS) related to the 
biological activity of TGF-β in A549 cells (20).  Idiopathic 
pulmonary fibrosis (IPF) occurs in the usual interstitial 
pneumonia resulting from enhanced TGF-β signaling(12).  
Asbestosis and IPF share similarities with respect to histo-
pathological appearance and radiographic manifestations 
(4).  IPF occurs as a result of alveolar epithelial injury and 
fibroblast-myofibroblast foci, and abnormal wound healing 
(26).  TGF-β signaling activates nuclear translocation of 
phosphorylation of Smad2/Smad3.  TGF-β signaling also 
affects apoptosis and gene expression resulting from the 
activation of p38 and c-Jun N-terminal kinases (JNK) and 
mitogen-activated protein kinases (34, 37). 

Mitochondria dysfunction is related to the onset and pro-
gression of many neurodegenerative, cardiovascular, and 
metabolic disorders, as well as the development of certain 
types of cancer (5, 9, 14, 31). The peroxisome proliferator-

activated receptor (PPAR) co-activator (PGC-α) regulates 
mitochondrial function, biogenesis and adaptation (13, 28, 
29).  Activation of mitochondrial biogenesis by PGC-1α is 
modulated by the co-activation of ERR-α (estrogen-rela-
ted receptor alpha), NRF-1(nuclear respiratory factor), and 
NRF-2 (16).  Replication and expression for mtDNA are 
regulated by NRF-1, NRF2, SP1, YY1 (yin yang protein 
1), and ERR-α, which promote the expression of genes 
encoding mitochondrial proteins (22).   

Our study showed that induction of TGF-β cause the 
downregulation of mRNA expression of PGC-1, and its 
related genes. The results of our study suggest that TGF-β 
may act as a repressor for the transcriptional activity of 
genes related to the mitochondrial enzymes in lung A549 
cells.

MATERIALS AND METHODS

Cell culture
A549 cells (donated by Dr. Moon, Pusan National Uni-

versity) were incubated in RPMI (Roswell Park Memo-
rial Institute) medium (Invitrogen, Gibco Cell Culture, 
Portland, OR, USA) supplemented with 10% fetal bovine 
serum, penicillin, and streptomycin.  Prior to stimulation 
with TGF-β, the cells were washed with phosphate buffe-
red saline (PBS), and then treated with 2 ng/mL of TGF-β 
in serum-free RPMI media containing penicillin and strep-
tomycin. 

Quantitative real-time PCR (qRT-PCR)
Total RNA was extracted using Iso-RNA Lysis reagent 

(5Prime.Inc, Gaithersburg, MD,USA) according to the 
manufacturer’s protocol.  cDNA was generated by iScript 
cDNA synthesis kit (Bio-Rad Laboratories, Hercules, 
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CA,USA).  qRT-PCR analysis was performed using the 
ICycler device (Bio-Rad Laboratories) with SYBR Green 
supermix (Bio-Rad Laboratories) according to the manu-
facturer’s instructions with the following primers fol-
lowing as PGC-1 forward, GTCACCACCCAAATCCT-
TAT; PGC-1 backward, ATCTACTGCCTGGAGACCTT, 
PPAR-γ forward, GGCTTCATGACAAGGGAGTTTC; 
PPAR-γ backward, AACTCAAACTTGGGCTCCA-
TAAAG; NRF-1 forward, CCACGTTACAGGGAG-
GTGAG; NRF-1 backward, TGTAGCTCCCTGCTG-
CATCT; NRF-2 forward, TACTCCCAGGTTGCC-
CACA; NRF-2 backward, CATCTACAAACGGGAA-
TGTCTGC, ERRα forward, CCTCTGTGACCTCTT-
TGACC; backward: TACTGACATCTGGTCAGAC; 
SOD1 forward, GGTCCTCACTTTAATCCTCTAT; 
SOD1 backward, CATCTTTGTCAGCAGTCACATT; 
SOD2 forward, TGACAAGTTTAAGGAGAAGC; SOD2 
backward, GAATAAGGCCTGTTGTTCC, Actin forward, 
TGAAGTGTGACGTGGACATC; Actin backward; 
GGAGGAGCAATGATCTTGAT. Data analysis was com-
pleted using the gene expression analysis program from 
iCycler iQ Real-Time PCR.  All mRNA data are given as a 
ratio normalized with GAPDH.

Western blotting
The cells were washed with ice-cold PBS and introduced 

into the sample buffer.  Total cell lysates were separated 
with 7.5% bis-tris gel and transferred onto the polyviny-
lidene fluoride membrane (Bio-Rad Laboratories).  The 
membrane was incubated with primary antibodies PGC-
1α (Santa Cruz Biotechnology, CA, USA), ERR-α (Santa 
Cruz Biotechnology), Actin (Cell Signaling Technologies, 
Beverly, MA, USA), and subsequently detected using 
HRP-labeled IgG conjugates.  HRP-conjugated secondary 
antibodies were detected with a chemiluminescence detec-
tion system.

Immunocytochemistry and imaging
A549 cells stimulated TGF-β (2 ng/mL) or media for 

24hr were washed twice with PBS and fixed with 3.7 
% formaldehyde for 10 min at room temperature.  After 
washing twice with PBS, the cells were permeabilized 
with chilled 90% methanol for 5 min.  The cells were bloc-
ked by 2% bovine serum albumin (BSA) in PBS for 30 
min.   PGC-1α (Santa Cruz Biotechnology) or ERR-α anti-
body (Santa Cruz Biotechnology) was incubated overnight 
in 2% BSA.  The cells were washed 3 times with PBS and 
incubated for 30 min with Alex Fluor 568 goat rabbit-IgG 
antibody (Invitrogen) (1:500 dilution).  Nuclei were stai-
ned with DAPI (1:1000).  Images were captured with a 
Laser confocal microscope (Olympus ). 

RESULTS

A549 has been previously used to study the mechanism 
of tumorigenesis and apoptosis in lung cancer cells (1, 3, 
8).  A recent study revealed that A549 lung cancer cells led 
to EMT transition by TGF-β (11, 19).  In the present study, 
we first investigated the morphological changes to A549 
cells following treatment with 2 ng/mL TGF-β.  The A549 
cells were cultured for 24 h in the presence of TGF-β, 
and their morphology was studied using phase-contrast 
microscopy.  We observed that the A549 cells showed fi-
broblast-like, spindle-shaped morphology in the treatment 

of TGF-β (Figure 1A ) , but the expression of vimentin 
or E-cadherin, which are both markers for the EMT was 
not observed.  These results are consistent with a previous 
study(36) showing that TGF-β caused the EMT phenotype 
in A549 cells, but did not affect either the vimentin or E-
cadherin.

It has been suggested that TGF-β activity suppresses 
the ROS generated from the mitochondria, but the role of 
mitochondrial biogenesis or function by induced TGF-β 
in the lung cells has not been investigated.  To determine 
whether TGF-β plays a role in mitochondrial biogenesis, 
we first determined the mRNA expression of PGC-1α.  
PGC-1α is a key modulator of mitochondrial biogenesis.  
Our analysis of the mRNA levels of PGC-1α by RT-PCR 
indicated that TGF-β treatment in A549 cells downregu-
lated the mRNA expression of PGC-1α (Figure 1B).  This 
downregulation of PGC-1α was verified by comparing 
with a control medium using qRT-PCR (Figure 1C).  In 
addition, western blotting revealed that PGC-1α reduced 
during the treatment of lung A549 cells with TGF-β (Fi-
gure 2B), suggesting that TGF- β may regulate the trans-
cription of PGC-1α.

Figure 1. TGF-β suppressed the transcriptional activity of PGC-1α 
in A549 cells. A) TGF-β induced the morphological change in A549 
cells. Two nanograms of TGF- β was added to the A549 cells and incu-
bated for 24 hr. Left panel shows the medium control, and right panel 
shows the cells treated with TGF-β. B) RT-PCR analysis of PGC-1α 
mRNA expression during the 24-h-long TGF-β treated A549 cells. 
Actin serves as the loading control. C) qRT-PCR analysis of PGC-1 
mRNA expression following 24-h treatment of A549 cells with TGF-β. 
N = 4. Error bars show the mean ± SER. **P < 0.01
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PGC-1α as a transcriptional co-activator functions in 
the regulation of cellular energy metabolism.  We exa-
mined the effect of TGF-β on the transcriptional genes of 
PGC-1α.  PGC-1α serves as a transcriptional activator for 
NRF-1, NRF-2, PPAR-γ, and ERR-α.  Using qRT-PCR, 
we determined the mRNA expression of NRF-1, NRF-2, 
PPAR-γ, and ERR-α in the treatment of A549 cells with 
TGF-β.  Our results showed that induction of TGF-β in 
A549 cells suppressed mRNA expression of NRF-2 and 
PPAR-γ, but that of NRF-1 did not change (Figure 2 A). 

Figure 2. TGF-β suppressed the expression of target genes of PGC-
1α. A) qRT-PCR analysis for the target genes of PGC-1α. A549 cells 
were incubated with TGF-β (2 ng/mL) or medium for 24 h, and the total 
RNA were analyzed. The mRNA expression level for the transcriptional 
target genes of PGC-1α was determined by qRT-PCR analysis. Error 
bars show the mean ± SER. N = 4. *P < 0.05, **P < 0.01, and ***P < 
0.001. B) Protein expression of PGC-1α and ERR-α. A549 cells were 
incubated with TGF-β (2 ng/mL) or medium for only 24 h, and the ly-
sate was immunoblotted with antibodies against PGC-1α, ERR-α, and 
actin antibodies.

The ERR family is the main PGC-1α partner which plays 
a role in the regulation of the mitochondrial and tissue-
specific oxidative metabolic pathways (7, 23, 25, 35).  By                   
immunoblotting, we observed that ERR-α was decreased 
following TGF-β treatment of A549 cells (Figure 2B).  
Following immunostaining, we examined the images of 
ERR-α by using confocal microscopy, and observed de-
creased expression of ERR-α following treatment with 
TGF-β compared to the medium control cells (Figure 3A).  
We further examined the subcellular localization of ERR-α 
by using high magnification (1200×) of confocal micros-
copy and determined that ERR-α was mainly localized in 
the cytoplasm.  Interestingly, we observed that ERR-α was 
localized in both the nucleus and cytoplasm in some A549 

cells following TGF-β treatment (Figure 3B, lower panel), 
suggesting that TGF-β may be responsible for the shuttling 
of ERR-α from the cytoplasm into the nucleus.    

We also examined the effect of TGF-β on the genes rela-
ted to the mitochondrial antioxidant enzymes, and several 
target genes of PPAR, ERR-α, and NRF-2.  Both PPAR-γ 
and ERR-α regulate MCAD (medium-chain acyl-CoA 
dehydrogenase), which catalyzes the initial step in mito-
chondrial fatty acid β-oxidation (27). 

Figure 3. TGF-β causes the shuttling of ERR-α from the cytoplasm 
into the nucleus. Cellular localization of ERR-α in A549 cells. A549 
cells were incubated with TGF-β (2 ng/mL) or medium only for 24 h, 
and the cells were immunostained with antibodies against with ERR-α. 
Images were observed by confocal microscopy. A) Confocal microsco-
py images showing downregulation of ERR-α in the presence of TGF-β 
in A549 cells (magnification, 400×). B) Confocal microscopy images 
(magnification, 1200×) showing nuclear localization of ERR-α for the 
treatment of A549 cells with TGF-β.

NRF-2 activates transcription of the COX subunit II 
(mitochondrion-encoded) and COX subunit IV (nucleus-
encoded), which function in the process of generating 
energy (6).  The copper/zinc SOD (Cu/ZnSOD or SOD1) 
is a cytosolic enzyme, and manganese superoxide dismu-
tase (MnSOD or SOD2) is a mitochondrial antioxidant 
enzyme.  Cytochromc C is released from mitochondria 
during the early stages of apoptosis.  Therefore, we deter-
mined the expression levels of MCAD, CytoC, COXII, 
COXIV, SOD1, and SOD2 by qRT-PCR.  Our data revea-
led that the expression of SOD2, MCAD, and cytochrome 
C was reduced following TGF-β treatment of lung A549 
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cells, but that of SOD1, COXII, COXIV did not change 
(Figure 4).  Our results imply that TGF-β may regulate 
the genes related to mitochondrial function, biogenesis or 
mitochondrial antioxidant enzymes.

Figure 4. TGF-β suppressed the genes for mitochondrial antioxi-
dant enzymes and metabolism enzymes. qRT-PCR showing the de-
crease of mRNA expression of SOD-2, CytoC, and MCAD. A549 cells 
were incubated with TGF-β (2 ng/mL) or medium for only 24 h. The 
mRNA levels of SOD-1, SOD2, CytoC, COXII, COX IV, and MCAD 
were determined by qRT-PCR. N = 4.  Error bars show the mean ± SER. 
*P < 0.05.

DISCUSSION

The role of TGF-β signaling has been extensively stu-
died in cancer, apoptosis, and fibrosis.  TGF-β has been 
found to increase the activity of ROS in lung cells (15), 
but its role in mitochondrial biogenesis, which is the main 
source of ROS, was not previously known.  Our results 
indicate that TGF-β suppresses the transcriptional activity 
of the mitochondrial genes in lung A549 cells. 

Reportedly, TGF-β causes mitochondrial defects in the 
Mv1Lu lung epithelial cells (36). Our data imply that 
TGF-β plays a role as the repressor for the transcriptional 
regulator of  PGC-1α or mitochondria related genes and 
may regulate mitochondrial biogenesis by downregulating 
PGC-1α, NRF-2, PPAR-γ, and ERR-α in lung A549 cells.  
PGC-1α has been known as a major transcriptional regula-
tor of the mitochondrial detoxification system, and it also 
affects the heart, liver, fat, and brain by moderating the 
mitochondrial genes (24).  PGC-1α regulates mitochon-
drial biogenesis through the nuclear respiratory factors 
(NRFs) and co-activates the transcriptional function of 
NRF-1 (32).  ERR-α, as a partner of PGC-1α, functions 
in regulating cellular energy balance by targeting MCAD, 
which mediates mitochondrial beta-oxidation of fatty acyl 
acids (27, 30).  Our findings indicate that TGF-β has the 
ability to cause ERR-α shuttling from the cytoplasm into 
the nucleus.  ERR family is similar to Estrogene receptors 
(ER). Further studies are required to better understand the 
mechanism of shuttling of ERR-α by TGF-β. 

Recent studies have reported that the Smad family, 
which is a mediator of TGF-β signaling acts as a repressor 
of PGC-1α expression, and the white adipose tissue from 
smad3 deficient mice showed an increase in mitochondrial 
biogenesis (33). There is evidence that Smad4 has high 
interaction affinity with COXII from yeast two-hybrid 
screening following TGF-β or UV stimulation (18). Our 
findings imply the possibility that TGF-β suppresses the 

transcriptional activity for the mitochondrial antioxidant 
enzymes and metabolic enzymes such as SOD2, CytoC, 
and MCAD.  However, further investigation will be neces-
sary to determine whether the transcriptional activity of 
mitochondrial gene can be regulated by the Smad family.

In summary, our results showed that TGF-β, which is 
known as key factor of EMT in fibrosis  suppresses the 
mRNA expression of PGC-1α and the genes related to 
mitochondrial biogenesis.  This study provides a novel 
insight into the role of TGF-β as a repressor for mitochon-
drial biogenesis in fibrosis.
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