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AZO DYE (DIRECT BLUE 14) DECOLORIZATION BY IMMOBILIZED 
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Abstract
Four species of Pleurotus i.e., P. florida, P. ostreatus, P. citrinopileatus and P. eryngii were evaluated for laccase and MnP 
production in submerged condition. Among these P. ostreatus showed highest production of laccase and MnP. Twelve days 
old culture of P. ostreatus produced 1096 U/ml and 693.5 U/ml of the laccase and MnP, respectively. Crude extracts of 
enzymes from P. ostreatus were immobilized in Ca- alginate matrix and tested for decolorization activity of the azo dye 
(Direct blue; CI 23850) in aerobic and microaerophilic condition for 24h. Treatment of dye with the immobilized enzymes 
decolorized up to 99% in eighteen hour.
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INTRODUCTION

Dyes are colored organic compounds having the pro-
perty of imparting their color to other objects. Natural and 
synthetic, both types of dyes are used in industrial applica-
tion. Manufacture and use of dyes and pigments is a mul-
tibillion dollar industry and a huge amount of these dyes 
is released into the environment in the form of industrial 
effluent (2, 3). Azo dyes account for the majority of all tex-
tile dye stuffs produced and have been the most commonly 
used synthetic dyes in the textile, food, paper making, co-
lor paper printing, leather and cosmetic industries (10, 11, 
34). World production of azo dyes is annually increasing; 
presently this is around one million tons (36). A significant 
fraction of these dyes is discharged as industrial effluent 
because there is never complete fixation of dyes takes 
place on fibres or other substances. Dyes, owing to their 
brilliance, are visible even at the lower concentrations, and 
their persistence in the environment is deleterious not only 
for the photosynthetic processes of the aquatic plants but 
also for all the living organisms. Azo dyes are recalcitrant 
xenobiotics and therefore, conventional aerobic wastewa-
ter treatment processes usually cannot efficiently decolo-
rize and degrade azo dye bearing effluents to the regula-
tory levels (10). Their persistence is mainly due to sulfo 
and azo groups, which do not occur naturally, making the 
dyes xenobiotic and recalcitrant to oxidative biodegrada-
tion (29). The chemical structures of the synthetic dye mo-
lecules are designed to resist fading on exposure to light 
or chemical attack, and this renders them recalcitrant (13). 

The various physical and chemical methods that can pos-
sibly be used for the treatment of industrial effluent contai-
ning various dyes are not self-sufficient and effective (50). 
Treatment of effluent by biological method was found sa-
tisfactory to some extent.  Among the biological treatment, 
aerobic bacteria are incapable of degrading these dyes, but 
the chromophoric group of azo dyes (the azo bond) can 
be acted upon by anaerobic bacteria, thus decolorizing the 
dyes (12). However, by the action of anaerobic bacteria, 

the azo bond is reduced to amines, which are potentially 
carcinogenic (5) and due to larger size of dyes; bacteria 
are unable to degrade these dyes efficiently. To overcome 
above-mentioned problems associated with bacterial sys-
tems various workers utilize fungal systems including 
brown rot and white rot fungi (21,33,38,49,56). White rot 
fungi, by virtue of their ability to degrade lignin in nature, 
produce enzymes such as laccases (EC 1.10.3.2), Man-
ganese peroxidases (MnPs; E.C 1.11.1.13), lignin peroxi-
dases (LiPs; E.C 1.11.1.14) and these enzymes are able to 
carry out oxidative decolorization of dyes thus bypassing 
the danger of formation of carcinogenic amines. Laccases 
seem to be most promising candidates for enzyme-media-
ted remediation processes because of their broad substrate 
specificity, easy production, and rapid action at milder pH 
and temperature. These are multicopper oxidases, which 
catalyze one electron oxidation of a wide range of inor-
ganic and organic substances, coupled with four-electron 
reduction of oxygen to water. The free radicals formed, 
due to laccase action, bypass the step involving the forma-
tion of carcinogenic amines (14) and, hence, can decolo-
rize a wide range of industrial dyes. Laccases can not act 
on the nonphenolic components of aromatic compounds 
because of their low redox potential (0.5–0.8 V). Moreo-
ver, the complex high molecular substrates cannot pene-
trate the active site of the enzyme. However, small orga-
nic compounds (mediators) having high redox potentials 
(>0.9 V) can be oxidized and activated by laccases, and 
these enable degradation of the substrate (8,9). Laccases 
from different basidiomycete strains differed remarkably 
in their dye-decolourising efficiency. According to Meyer 
(31), because of the structural variety of azo dyes, they 
are not uniformly susceptible to biodegradation. It was 
demonstrated that substituent groups such as nitro and sul-
pho are frequently recalcitrant to biodegradation, whereas 
2-methyl, 2-methoxy, 2, 6-dimethyl and 2, 6-dimethoxy-
substituted 4-(4-sulfophenylazo)-phenol were preferred 
for azo-dye degradation by peroxidase from Streptomyces 
spp and Phanaerochaete chrysosporium (46). 
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An immobilized enzyme is an enzyme that is attached 
to an inert, insoluble material such as calcium alginate 
(produced by reacting a mixture of calcium alginate solu-
tion and enzyme solution with calcium chloride). This can 
provide increased resistance to changes in conditions such 
as pH or temperature. It also allows enzymes to be held in 
place throughout the reaction, following which they are 
easily separated from the products and may be used again - 
a far more effi cient process and so is widely used in indus-
try for enzyme catalyzed reactions.

MATERIALS AND METHODS 

Cultures and their maintenance
The pure culture of Pleurotus species i.e. P. fl orida, P. 

ostreatus, P. citrinopileatus and P. eryngii were procured 
from Directorate of Mushroom Research, Solan (H.P.), 
India. Throughout the study, cultures were maintained on 
malt extract agar medium at 280C and subcultured at the 
regular interval of three weeks.

Production of enzymes
The medium for enzyme production contained 2% wheat 

bran and 2.5% malt extract. Double distilled water was 
used for preparation of the medium and the pH was adjus-
ted to 6.0 by using NaOH or HCl. Incubation was carried 
out at 280C in BOD incubator in cotton plugged 250 ml 
Erlenmeyer fl asks containing 50 ml of media. Flasks were 
inoculated with 1 cm2 agar pieces from actively growing 
fungus on malt extract agar plate. 

Extraction of Extracellular enzymes 
Samples of substrate were collected at regular interval 

of 3 days and extracted in phosphate buffer (pH 6.0) for 
lignolytic enzymes. Filtrate of extraction was used for en-
zyme assay.

Enzyme assay 
Laccase (E.C. 1.10.3.2) activity was determined using 

o- methoxyphenol catechol monomethylether (guaiacol) 
as substrate. The reaction mixture contained 1mM subs-
trate and crude enzymes. The oxidation of substrate was 
followed spectrophotometrically (A495) (20).

Manganese dependent peroxidases (MnP) (E.C. 
1.11.1.13) activity was determined using guaiacol as subs-
trate. The reaction mixture contained 0.5 M Na- tartrate 
buffer (pH 5.0), 1mM MnSO4, 1mM H2O2, 1mM substrate 
and crude enzymes. The oxidation of substrate at 300C was 
followed spectrophotometrically at (A465) (24).

Immobilization of crude enzymes 
Crude enzyme extracts of P. citrinopileatus were mixed 

with 3% (w/v) Ca- alginate. The mixture was introduced 
into chilled 0.2 M CaCl2 solution to form beads of 3.0- 4.0 
mm in diameter. The beads were suspended in 0.2 M CaCl2 
for 24 hrs, to enhance the mechanical stability. 

Decolorization of Direct blue 14
Decolorization assays were carried out under static and 

agitated (150 rpm) conditions with 200 mg/l dye and im-
mobilized enzymes. The samples were incubated at 300C 
for 24 h. Dye decolorization was measured spectroph-
tometrically (A595) for the microaerophilic and aerobic 
stages, and the percentage of effl uent decolorization was 

calculated.

RESULTS AND DISCUSSION

The time course of MnP and laccase activity was fol-
lowed in the wheat and rye bran supplemented liquid 
cultures over a period of one month. Initially, it was veri-
fi ed that amongst the four species of Pleurotus; P. ostrea-
tus showed highest laccase activities on all days evaluated, 
reaching maximum levels of 1096 U/ml in up to 12 days of 
culture on wheat bran containing media. This was followed 
by P. citrinopileatus which showed maximum laccase acti-
vity (910.3 U/ml) in 12 days. Subsequently P. eryngii and 
P. fl orida showed maximum laccase activity i.e. 741.1 U/
ml and 353.3 U/ml in 18 days and 21 days, respectively.

MnP activities were detected at levels of up to 693.5 U/
ml by P. ostreatus in 12 days old culture followed by P. 
eryngii, P. citrinopileatus and P. fl orida i.e. 678.5 U/ml, 
580.5 U/ml  and 329 U/ml on 21, 12 and 9 days of culture, 
respectively.

With immobilized enzymes of Pleurotus ostreatus, 
decolorization of direct blue was recorded. In this expe-
riment decolorization of direct blue 14 was done by crude 
extracellular enzymes of P. ostreatus immobilized on Ca- 
alginate matrix. Decolorization experiment was performed 
in two conditions i.e. static and agitated. In agitated condi-
tion on 150 rpm it was observed that 99.32% of direct blue 
14 containing media was decolorized in 18 hrs whereas in 
static condition it was 97.04% in 24 hrs. Initially, decolori-
zation was slow but with time attained its maximum. 

In recent years there is a substantial interest in harnes-
sing degradative capabilities of fungi for the treatment 
of contaminated wastewaters and some authors have hi-
ghlighted decolorization effi ciency of various eco-physio-
logical groups of basidiomycetes (26,27,47,51). Immobili-
zation of enzyme on inert supports showed it to be useful 
tool; it actually represents several applicative advantages, 
such as long time use (either in batch or continuous mode), 
treatment of large volumes of wastewater, possibility to 
refresh cultures between different cycles, and allowing 
the persistence in competition with faster growing species 
(4,28,52).

In the present investigation four species of Pleurotus 
i.e., P. fl orida, P. ostreatus, P. citrinopileatus and P. eryn-
gii were tested for enzyme production. It is evident from 
fi gure 1 and 2 that among all four species P. ostreatus 
showed maximum laccase and MnP activity i.e., 1096 and 

Figure 1. Laccase production of different Pleurotus species in 
submerged condition.
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693.5 U/ml respectively after 12 days. In comparison to P. 
ostreatus and P. citrinopileatus, P. fl orida and P. eryngii 
showed low enzyme activity. Every species showed maxi-
mum enzyme activity at 12th day of incubation and thereaf-
ter; it might be due to occurrence of initial lag phase  when 
species try to establish it in new medium. When culture 
established itself  in the culture medium,  it enters into log 
phase and metabolically this is most active phase where 
species showed maximum enzymatic activity. Cereal bran 
was reported to increase ligninolytic enzyme production 
of the white-rot fungi Coriolopsis gallica and Bjerkandera 
adusta (37). In the beginning of the experiment on day 3, 
different Pleurotus species showed low enzymatic activi-
ties. This was followed by sharp increase up to 12 days in 
P. ostreatus and P. citrinopileatus whereas in case P. eryn-
gii and P. fl orida it took 18 and 21 days and for laccase and 
for MnP it took 18 and 9 days, respectively. Laccase and 
MnP both are oxidative enzyme and having broad range of 
substrate specifi city.

Several authors have discussed the role of enzymes in 
the decolorization activity of lignicolos fungi (1, 30, 33, 
42, 43, 54, 55,  57). Different aromatic compounds (2, 
5- xylidine, vanillic acid, guaiacol, gallic acid) have been 
tested for their effects on laccase production by basidio-
mycetes (16, 17, 22). Though hundreds of azo dyes are in 
industrial use, their environmental fate is not well under-
stood. Laccases are copper- dependent enzymes produced 
by a number of fungi and plants, and they oxidize phenols 
and anilines in the presence of oxygen (6, 7, 23, 53).

The introduction of covalent bonds during immobili-
zation usually enhances stabilities of enzymes due to the 
limitation of conformational changes (1). Immobilization 
of fungal laccases on various carrier materials such as acti-
vated carbon (19), agarose (40), Eupergit C (18), Sepha-
rose (31), and porosity glass (41,42), has been shown to in-
crease stabilities of the enzyme at high pH and tolerance to 
elevated temperatures and to make the enzyme less vulne-
rable to inhibitors, such as Cu chelators. Previously, it was 
found that a considerable number of textile wastewaters 
reacted toxically and mutagenically (25, 32).

The dye decolorization by fungal cultures is often cor-
related to ligninolytic enzyme activities (39,48). Using a 
respiration-inhibition test, it has been found that anaerobic 
degradation of azo dyes rendered the effl uents more toxic 
by generating amines, while a second aerobic treatment eli-
minated this toxicity (35). Immobilization of enzymes on 
Ca- alginate matrix enhanced the effi ciency of enzymes. 
Decolorization experiment with immobilized enzymes was 

run for 24 h. Figure 3 demonstrates that in agitated condi-
tion decolorization of direct blue 14 was maximum in 18 
h  i.e. 99.32%, whereas in static condition it took 24 h  to 
reach up to 97.04% decolorization. From fi gure it is clear 
that decolorization in agitated condition is more effi cient 
and signifi cant than static condition with respect to time.

Other articles in this theme issue include references (59-86).
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