INTRODUCTION

DNA polymerases are integral part of genome maintenance and replication in both eukaryotic and prokaryotic systems of life. Early sequence alignments revealed the presence of conserved blocks of amino acid residues (motifs A to F) present in DNA polymerases from different species (6,14,15). The conserved acidic amino acid residues (aspartate/glutamate) in motifs A and C were postulated to serve as metal ligands for divalent cations during phospho-tyl transfer reaction catalyzed by replication enzymes. The extensive structural studies have shown that DNA polymerases from wide variety of sources exhibit a common architectural layout that resembles the half-open right hand (21,31,34). There various structural units have been termed as fingers, thumb and palm subdomains (21,35). The palm subdomain is highly conserved among DNA polymerases, as it constitutes the catalytic core. The palm also contains catalytic carboxylates from motifs A and C. These carboxylates participate in the catalytic process by providing the binding sites for the two divalent metal ions that are liganded to the phosphate moieties of dNTP (8,13,22,24). One of the two metals (referred to as metal A) has been proposed to function in the chemistry of phosphodiester bond formation while the other metal (metal B) has been suggested to serve as structural metal which stabilizes the triphosphate moiety of dNTP prior to bond formation and neutralizes the charge of leaving pyrophosphate moiety after the bond formation (10,35,36). The fingers and the thumb subdomains exhibit wide variation, both at the secondary and tertiary structure levels (7,16,23). Using pre-state-state kinetics, minimal general reaction mechanism of DNA polymerase has been established (17), and most DNA polymerases utilize steps of this reaction scheme. According this reaction mechanism, a typical DNA polymerase first binds template-primer to form E.DNA binary complex. The dNTP binding occurs to this complex to form an ‘open’ E.DNA.dNTP ternary complex. A rigid body movement of fingers subdomain brings the dNTP in a ‘closed’ catalytically competent conformation poised for catalysis. The dNTP substrate at this state is held in-place through the interaction between catalytic carboxylates and triphosphate moiety of dNTP mediated by divalent cations. The divalent cations not only align the dNTP for catalysis, they also coordinate with 3’OH moiety of primer and generate a nucleophile. Highly structured tetragonal bi-pyramid geometry has been proposed as a result from the metal coordination (33,34). The DNA polymerases can use either Mg$^{2+}$ or Mn$^{2+}$ as divalent cations. Both cations can form octahedral bi-pyramid coordination geometry; however, the differences in coordination of the two metal ions at the active site of DNA polymerases (if any) are not known.

As discussed above, the carboxylate residues are critical constituents of the catalytic center of DNA polymerases and have consequently become the landmark feature of DNA polymerase active site. While most DNA polymerases contain three carboxylates, some variation in the absolute requirement of only two of the three or all three carboxylates in the catalytic process has persisted. For example, in *E. coli* DNA polymerase I, only two aspartates (D705 and D882) are required for catalysis (18,25,26). However, in α-subunits *E. coli* DNA pol III, and in retroviral reverse transcriptases, all three carboxylates are required for activity (20,27). In order to clarify the absolute requirement of two or three carboxylates in pol III and related enzymes.
and to understand the role of individual aspartates in these enzymes, we made alanine and glutamate substitutions at the three individual aspartates in DNA pol III homolog, pol E from *Geobacillus kaustophilus* HTA (Gka) and investigated their effects on the polymerase activity. We find that the alanine substitution at any one of the three carboxylate renders the enzyme inactive. However, the homologous mutation of aspartate to glutamate at two of the three sites is well tolerated, particularly in presence of Mn²⁺ as a divalent cation. Based on these results and other structural characteristics of the apo and ternary complex structures of pol III, we conclude that at least two aspartates are required for the substrate dNTP binding, while the third one is required for the step of bond formation.

MATERIALS AND METHODS

Materials

The PCR grade dNTPs were from Roche Applied Science. Radiolabeled nucleotides were obtained from Perkin-Elmer Life Sciences. The DNA extraction kit was from Qiagen, whereas DNA oligodeoxynucleotides were either from MWG-Biotechnologies or from the Molecular Resources Facility at the New Jersey Medical School, Newark, NJ. All 5’-P-5’-ended labeled oligomers were purified by denaturing polyacrylamide-urea gel electrophoresis as described previously (1,12,32).

Cloning, expression and purification of WT Gka polIII (pol E)

Geobacillus kaustophilus HTA (Gka) was obtained from the glycerol stock deposited in the Karadeniz Technical University, Molecular Biology Laboratory (Trabzon, TURKEY). The bacterium was grown in Luria-Bartani (LB) medium at 55 °C and the genomic DNA was purified using Wizard Genomic DNA Purification Kit (Promega, Madison, USA). Gka DNA E gene was amplified by two specific primers (GkaFw: 5’–ATAAGGATCCGATGATGTTGCTTCCATGGC-3’ and GkaRv: 5’– ATAGGATCTTACTGACGCACACCGGTC-3’). Both primers contain BamHI restriction site (underlined) to allow in-frame ligation into the pET-28a expression vector (Novagen). The gene amplification by PCR was performed using 2.5 units of Expand High Fidelity DNA polymerase (Fermentas) in a 50 μl reaction mixture containing 0.2 mM of dNTP mixture, 300 ng of each primer, and 100 ng of genomic DNA. A predicted 3.76 kb DNA fragment obtained from PCR, was digested with BamHI and ligated into the pET-28a expression vector. The resulting recombinant plasmid was transformed into *E. coli* BL21 (DE3) pLysS for overexpression. The expression was carried out as detailed by Sandalli et al. (28). The recombinant enzyme containing N-terminal hexa-histidine-tag was purified by nickel-affinity column using a protocol suggested by manufacturer (Promega). They were grown to an optical density at 600 nm of about 0.6 in LB medium containing 50 μg/ml ampicillin at 37 °C, and expression was induced by the addition of 1 mM isopropyl β-D-thiogalactopyranoside. After induction for 3 h at 37 °C, the cells were harvested by centrifugation. The recombinant Gka pol E and its mutant derivatives were purified by performing heat treatment and nickel affinity chromatography (28).

Site-directed mutagenesis of catalytic carboxylates (D378A, D378E, D380A, D380E, D531A, D531E and D378E/D531E)

We used a PCR based protocol as described in Stratagene’s QuickChange site-directed mutagenesis kit to generate the desired mutations in DNA pol E. The pET-28a plasmid containing the Gka pol III gene was used for generating mutant derivatives, and all mutations were confirmed by DNA sequencing of plasmid. The mutant enzymes were purified using the protocol standardized for WT enzyme.

Determination of DNA binding affinity (K_{D,DNA})

We used gel mobility shift assay to determine the the binding affinity of template-primer to the WT and mutant Gka pol E enzymes. To determine the binding affinity of template-primer to the desired enzymes, gel mobility shift assays were performed as described previously (12). The binding of 1 nM 63/14-mer template-primer (sequence is shown in fig 1) to various concentrations of enzyme (5 to 100 nM) was carried out in a reaction mixture containing 50 mMTris-HCl, pH 7.8, 5 mM MgCl₂, 10% (v/v) glycerol, and 0.1 mg/ml bovine serum albumin. Different protein concentrations were used to bracket the K_{D,DNA} value. Samples were electrophoresed at 100 V for 1.5 h at 4°C on a 6% nondenaturing polyacrylamide gel, using 89 mM Tris borate, pH 8.2, buffer. Gel were dried, then scanned in a PhosphoImager and quantitated by ImageQuant software (Amersham Biosciences). The percent enzyme-TP binding was calculated by quantifying the amount of uncomplexed TP in each lane. Percent binding values were then used for the determination of K_{D,DNA} by interpolation, using nonlinear regression for one-site binding (hyperbola) with GraphPad Prism software.

Determination of steady-state kinetic constants (kcat and K_{M,dNTP})

Determination of K_{M,dNTP} single nucleotide incorporation by Gka polIII (pol E) was carried out at 55 °C. Five dATP concentrations ranging between 0 to 20 μM were used to determine K_{M,dNTP}. The reaction mixtures (6 μl) containing 5 mM MgCl₂, or 2 mM MnCl₂, 2 mM 5-end-3²P-labeled 63/14-mer template-primer (the next incoming dNTP is dATP) and 10 nM Gka pol E were incubated with varying concentrations of dNTP. The reactions were stopped at 30 sec by 6 μl Sanger’s gel loading dye (29). The extended primers were resolved on 16% acrylamide-8M urea gel followed by visualization and quantitation as described above. The data were processed as described by Astatke et al (2).

RESULTS AND DISCUSSION

Comparative analyses of the primary amino acid sequences of many DNA polymerases revealed that certain blocks of sequences (called motifs A to F) are highly conserved. One aspartate in motif A and motif C is present in all DNA polymerases. However, in some DNA polymerases such as mammalian DNA polymerase β (30) and prokaryotic pol C (3,9) a second aspartate is also present in motif A. In other DNA polymerases such as *E.coli* pol I and HIV-1 RT, second carboxylate is present in motif C. One carboxylates from each motif has been shown to be critical for polymerase activity (31,11). A detailed analy-
sis of 4 carboxylates, inferred from the results of the properties of the alanine mutant species of these enzymes, showed that only two aspartates were absolutely essential, while the 3rd and 4th ones provided strong activity enhancing effects (11). In fact, Steitz has proposed a mechanistic model for the binding of two divalent metal ions, called metal A (catalytic metal) and metal B (structural metal), to two aspartates and phosphate oxygens of incoming dNTP, forming a tetragonal bipyramid (octahedral) geometry, which represents an active state intermediate in the polymerase reaction (35). A recent pre-steady state analysis of the pre-polymerase complex formation in KF of E. coli DNA polymerase, using alanine mutant of two essential carboxylates has further confirmed that one aspartate (D705) is involved in ternary complex formation, while the other (D882) provides a site for the binding of metal A, which in turn activates the catalytic complex (4). In view of this scenario, it was not clear, how the polymerases requiring participation of 3 aspartates, such as retroviral reverse transcriptases as well as prokaryotic pol III (5,27,19) functioned.

The present study, using Geobacillus kaustophilus pol E, a pol III homolog, as a representative of polymerases that utilize 3 aspartates at the active center, was undertaken to clarify the role of individual aspartate. The identity of these aspartates was predicted from primary amino acids sequence comparison of few related polymerases and from the two crystal structures of the related homologues enzymes (3,9). We first confirmed that all three aspartates are required for the catalytic activity (Table 1) as their individual mutation to alanine exhibited near complete loss of activity. This loss of activity remained unchanged, when Mg$^{2+}$ was replaced by Mn$^{2+}$ in the reaction mixture (Figure 1A and B).

When aspartic acid was replaced with glutamic acid, maintaining the same negative charge but the length of the acidic side chain is reduced by one C-C bond (methylene unit), a somewhat different activity pattern was noted, only with Mn$^{2+}$ containing reaction mixtures. In this case, some recovery of polymerase activity was clearly seen with two of the three mutant enzymes. The two active mutant enzymes were D378E and D531E, while the mutant enzyme D380E remained inactive. In order to further clarify the contribution of two partially active glutamate mutant enzymes, the activities of WT and the two active mutant derivatives were compared (Figure 1A and B).

Figure 1. Polymerase activity of WT and active site aspartates mutants in presence of Mg$^{2+}$ or Mn$^{2+}$. This figure shows the incorporation of a single nucleotide by WT and active site aspartate mutant derivatives of Gka pol E in the presence of either 1 mM MnCl$_2$ (panel A) or 5 mM MgCl$_2$ (panel B). The reactions were carried out at 55 °C for 30 minutes with increasing concentration of dATP (0 to 20 μM). The $K_{M,dNTP}$ was determined by plotting the initial velocity against dNTP concentration. The template-primer sequence is given in panel B.
enzymes, a double mutant enzyme (D378E/D531E) was generated and tested for polymerase activity. Interestingly, the simultaneous mutation of both aspartates (D378 and D531) to glutamate had less than 3% activity in Mn$^{2+}$-catalyzed reaction and no activity with Mg$^{2+}$-catalyzed reactions (Fig. 1 and Table 1). These observations suggest that homologous substitution of glutamate for aspartate may be tolerated at only one of the two sites. The examination of the substrate binding constants with mutant enzymes that possessed some activities indicated some changes in the $K_{M,dNTP}$ (Table 1). There was a decrease in the affinity for dNTP binding by about 10 and 100-fold with D378E and D531E. We were unable to determine $K_{M,dNTP}$ for D380E as this enzyme did not display any activity even at high concentrations of substrate dNTP. Furthermore, the binding affinity for template primer ($K_{D,DNA}$) also did not change significantly with alanine or glutamate mutant enzymes, implying no role of catalytic aspartates in the binding of template-primer. The observation that Mn$^{2+}$-dNTP could be accepted as a substrate at any one of the two mutated positions, with slightly shorter acidic chain, suggest that Mn$^{2+}$ can bind to carboxylate oxygens at positions 378 and 531, and fulfill the function of metal B moiety in Steitz’s two metal ion mechanism for polymerases (35). However, mutant enzymes, D380A and D380E did not show any activity with either Mg$^{2+}$ or Mn$^{2+}$ catalyzed reactions implying the absolute need for aspartic acid at this position. Therefore, we conclude that D380 is the ligand for metal A (catalytic metal) and it is involved in the chemistry of bond formation reaction.

The crystal structures of apo (3) and ternary complex of pol III (37) suggest subtle characteristic differences among three catalytic aspartates. A close up of the active site in apo enzyme of *Taqquaticus* pol III is shown in Figure 2A, whereas Figure 2B shows the superposition of apo and ternary complex of *Taqquaticus* pol III. In the apo enzyme, one metal ion is present at the active site even in the absence of template-primer and dNTP. This metal ion (metal A) is 2.6 Å from OD2 atom of D463 and 2.2 Å from OD1 atom of D465. Interestingly, D618 does not interact with this metal. Instead, D618 forms a salt bridge with K616 (between NZ atom of K616 and OD1 atom of D463). An additional metal (metal B) can only be seen in the ternary complex (Figure 2B), which coordinates only with D465 and D463, and the phosphate moiety of incoming dNTP. D616 does not form any coordination with the metals present in the ternary complex crystal structures. It may be pointed out here that D463, D465, D618 and K616 seen in the crystal structure are equivalent to D378, D380, D531 and K529 of Gka pol E. Therefore, the structural data together with mutant enzyme studies discussed above, suggest that D378 and D380 are stably metal chelated, whereas D531 may have transient coordination with metal ion.

In summary, our results with the catalytic carboxylate triad in *Gka* DNA pol III show that two of the three aspartates, one from the pair in one motif and the other from a distal motif, are involved in the substrate dNTP binding, while the remaining one is involved in the process of phos-

Table 1. Kinetic parameters of WT and active site mutant Gka pol E enzymes.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>$K_{D,DNA}$ (nM)</th>
<th>Activity (Mg$^{2+}$) (%) WT</th>
<th>$K_{M,dNTP}$ (Mg$^{2+}$)</th>
<th>Activity (Mn$^{2+}$) (%) WT</th>
<th>$K_{M,dNTP}$ (Mn$^{2+}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>24.0 ± 1.2</td>
<td>100</td>
<td>0.14 ± 0.01</td>
<td>100</td>
<td>1.5 ± 0.2</td>
</tr>
<tr>
<td>D378A</td>
<td>27.4 ± 4.8</td>
<td><0.5</td>
<td>No Activity</td>
<td><0.5</td>
<td>No Activity</td>
</tr>
<tr>
<td>D378E</td>
<td>33.8 ± 1.3</td>
<td><1.0</td>
<td>18.50 ± 1.6</td>
<td>34.0</td>
<td>No Activity</td>
</tr>
<tr>
<td>D380A</td>
<td>24.9 ± 2.7</td>
<td><0.5</td>
<td>No Activity</td>
<td><0.5</td>
<td>No Activity</td>
</tr>
<tr>
<td>D380E</td>
<td>21.5 ± 4.0</td>
<td><0.5</td>
<td>No Activity</td>
<td><0.5</td>
<td>No Activity</td>
</tr>
<tr>
<td>D531A</td>
<td>50.8 ± 6.8</td>
<td><1.0</td>
<td>No Activity</td>
<td><0.5</td>
<td>No Activity</td>
</tr>
<tr>
<td>D531E</td>
<td>14.4 ± 1.0</td>
<td><1.0</td>
<td>1.3 ± 0.8</td>
<td>58.0</td>
<td>17.24 ± 1.4</td>
</tr>
<tr>
<td>D378E/D531E</td>
<td>52.4 ± 4.8</td>
<td><1.0</td>
<td>No Activity</td>
<td>3.0</td>
<td>No Activity</td>
</tr>
</tbody>
</table>

Figure 2. Position of metal ions at the active site of pol III: Panel A shows the close-up view of active site of *Taqquaticus* pol III and panel B shows the superposition of apo and ternary complex of the same enzyme. Metal ions A and B are shown as dots. The catalytic aspartates and a conserved lysine are rendered in ball-and-stick mode.
phodiester bond formation.

ACKNOWLEDGEMENTS

This study was supported by a scholarship to C. Sandalli from TÜBİTAK.

Other articles in this theme issue include references (38-65).

REFERENCES

4. Bermek, O., Grindley, N. D., and Joyce, C. M. Distinct roles of the active-site Mg" ligands, Asp882 and Asp705, of DNA polymerase I (Klenow fragment) during the prechemistry conformational transitions. *J. biol. chem.* 2011, **286**: 3755-3766.

33. Steitz, T. A., and Steitz, J. A. A general two-metal-ion mechanism for catalytic RNA. *Proc nat acad sci USA.* 1993, **90**: 6498-6502.

