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miR-145 regulates chemoresistance in hepatocellular carcinoma via epithelial 
mesenchymal transition
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Abstract
Resistance to chemotherapeutic drugs is a major obstacle in hepatocellular carcinoma (HCC) therapy. MicroRNA-145 (miR-145) has been shown to be down-regu-
lated in several cancers and may be involved in the process of carcinogenesis. The present study aimed to evaluate the effects of miR-145 in adriamycin (ADM)-re-
sistant human HCC cells. We found that miR-145 was significantly reduced in HepG2/ADM and HuH7/ADM cells compared with the chemosensitive parental cells. 
Up-regulation of miR-145 increased the ADM cytotoxicity in chemoresistant tumor cells. In addition, Smad3 was identified as the target of miR-145 and miR-145 
overexpression inhibited Smad3 expression both at the mRNA and protein levels. The luciferase reporter assay confirmed that Smad3 was a direct target of miR-145. 
Moreover, up-regulation of miR-145 suppressed Smad3 related EMT features as shown by increased expression of E-cadherin and reduced vimentin level in HepG2/
ADM and HuH7/ADM cells. Our study demonstrated that miR-145 modulated both chemoresistance and EMT in HCC cells, and up-regulation of miR-145 might 
be a potential therapeutic strategy for treatment of chemoresistant HCC.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most 
malignant tumors, ranking the third cause of cancer-re-
lated mortality in the world (1). Statistical studies have 
shown that there is estimated 350 000 new cases and 
nearly one million deaths annually (2, 3). Current treat-
ments for HCC include chemotherapy, radiotherapy, 
and surgical operation. However, the development of 
acquired drug resistance to conventional chemothera-
peutics has become a major obstacle in HCC treatment 
(4, 5). Such limitation highlights the imperative need for 
identifying novel treatment strategies which may help 
overcome drug resistance and enhance tumor cell res-
ponse to anti-cancer drugs.

   It has been acknowledged that the pathogenesis of 
liver cancer is a multistep process regulated by aberrant-
ly protein expression and alterations of morphological 
and molecular features during malignant progression (6, 
7). Epithelial-mesenchymal transition (EMT) is a com-
plex, reversible process which induces epithelial cells 
to transform to mesenchymal phenotype (8). Although 
accumulating evidences suggest that EMT plays an im-
portant role in regulating the chemoresistance proper-
ties of liver cancer, but the molecular mechanism still 
remains elusive (9-11).

MicroRNAs (miRNAs) are a class of short non-
coding RNA molecules (19–25 nucleotides in length) 
which repress the expression of target genes at the post-
transcriptional level (12). Aberrant microRNA expres-
sion features significantly in many cancers and plays cri-
tical roles in tumor cell behavior, such as proliferation, 

differentiation and apoptosis (13-15). Recent studies 
have shown that miRNAs interact with EMT to develop 
chemoresistance. Several miRNAs has been identified 
to participate in the development of chemoresistance to 
anti-epidermal growth factor receptor in non small cell 
lung cancer cells (16). Among those miRNAs, miR-200 
family is one of the most extensively studied miRNAs 
participated in both EMT and chemoresistance of can-
cer cells (17). 

miR-145 has been found to be down-regulated in 
several cancers such as bladder cancer (18), liver can-
cer (19), and lung adenocarcinoma (20), suggesting 
reduced miR-145 expression may be involved in the 
general process of carcinogenesis. However, to date the 
role of miR-145 in EMT and chemoresistance of liver 
cancer cells has never been investigated. In the present 
study, we aimed to evaluate the relevance of miR-145 in 
chemoresistance of HCC cells using HepG2/adriamycin 
(ADM) and HuH7/ADM models.

Materials and methods

Cell culture
Human HCC cell lines HepG2 and HuH7 were pur-

chased from the ATCC (Manassas, VA, USA). ADM 
was purchased from Sigma-Aldrich (St. Louis, MO, 
USA). Multidrug resistant human HCC cell lines, 
HepG2/adriamycin (ADM) and HuH7/ADM were esta-
blished by treating HepG2/WT and HuH7/WT cells with 
stepwise increasing concentrations of ADM (21,22). All 
cells were maintained at 37°C in 5% CO2 incubator and 
cultured in DMEM (Gibco, Carlsbad, CA, USA) supple-
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mented with 10% FBS and 1% penicillin⁄streptomycin.

CCK-8 assay 
HCC cells were seeded onto 96-well plates at 3.0 x 

103 cells⁄well. The medium was replaced with the cor-
responding serum-free medium for 24 h to synchronize 
the cell cycle, then serum-free medium was replaced 
with complete medium containing the drugs at the indi-
cated concentrations for 48 h. Then 10 µL ⁄ well CCK8 
solution (Dojindo, Kumamoto, Japan) was added, the 
plates incubated for 3 h, and absorbance was measured 
at 450 nm using an MRX II microplate reader (Dynex, 
Chantilly , VA, USA).

RNA extraction and quantitative real-time PCR (qRT-
PCR)

Cells were seeded on to 12-well plates and total 
RNAs were isolated by TRIzol reagent (Invitrogen, 
USA) according to the manufacturer’s instructions. 
RNA was reverse transcribed and amplified using the 
miRNA detection kit (Ambion, USA) according to the 
protocol. PCR reactions were performed on ABI 7500 
Real-Time PCR System (Applied Biosystems) with 
the following conditions: 95˚C, 10 min for 1 cycle, 
then 95˚C, 15 sec, 60˚C, 1 min for 40 cycles. The U6 
small nuclear RNA was used as a control. The mRNA 
expression of Smad3 was measured by real time PCR 
with GAPDH used as control. The primer sequences 
were 5’- CAGATGTGTGGTCCTTTG- 3’ (forward); 
5’- ATTCGGGTTGTAGGAGTCT- 3’ (reverse).

Luciferase activity assay
Luciferase reporters were generated based on the fi-

refly luciferase expressing vector pMIR-REPORT (Am-
bion, USA). Cells were seeded in 24-well plates at the 
density of 5x104 cells per well the day before transfec-
tion. Luciferase reporter (500 ng), 50 pmol (miRNA-145 
mimic or control) and 40 ng of pRL-TK were added in 
each well. Cells were collected 48 h after transfection 
and analyzed using the Dual-Luciferase Reporter Assay 
System (Promega, USA).

Western blot
Tumor cells were lysed in 50 μl cell lysis buffer (Cell 

Signaling, Danvers, MA , USA) containing protease in-
hibitors (Sigma, USA). Whole cell lysates were prepa-
red and fractioned were separated by 10% SDS-PAGE 
and proteins were transferred to polyvinylidene difluo-
ride (PVDF) membranes (Millipore, Billerica, MA, 
USA). The membranes were then incubated with anti-
Smad3 (Abcam, Cambridge, USA), anti-E-cadherin, or 
anti-vimentin (Cell Signaling Technology, USA) anti-
bodies at 4°C overnight. The membranes were washed 
three times with TBST and then incubated with the ap-
propriate HRP-conjugated secondary antibodies for 1 h 
at room temperature. Protein expression was detected 
by chemiluminescence (GE Healthcare, Piscataway, NJ, 
USA).

Statistical analysis
Each experiment was performed in triplicate, and 

repeated at least three times. All the data were presented 
as means ± SD and treated for statistics analysis by 
SPSS program. Comparison between groups was made 

using ANOVA and statistically significant difference 
was defined as P<0.05.

Results

Down-regulation of miR-145 in chemoresistant HCC 
cells

Firstly, we incubated HepG2 and HuH7 cells respec-
tively with ADM at a stepwise increasing concentration 
and selected the resistance cells by removing the non-re-
sistant dead cells. We then tested the ADM sensitivity of 
each cell lines and showed that the lethal dose (IC50) of 
ADM at 48 h was 1.27±0.12 µmol/L in HepG2 cells and 
87.40±5.24 µmol/L in HepG2/ADM cells (Fig. 1A and 
B). Similarly, the ADM IC50 increased from 0.85±0.11 
µmol/L in HuH7 cells to 74.26±4.76 µmol/L in HuH7/
ADM cells (Fig. 1C and D). To understand the functio-
nal relevance of miR-145 in cancer cells chemoresis-
tance, we evaluated the expression of miR-145 in HCC 
cells resistant to ADM by qRT-PCR. Results showed 
that miR-145 was significantly down-regulated in 
HepG2/ADM and HuH7/ADM cells compared to their 
parental cells (Fig. 1E and F). These results implied that 
miR-145 might be involved in the chemoresistance of 
HCC cells to ADM.

miR-145 regulated the chemoresistance of HCC cells
In order to confirm that miR-145 participated in 

ADM cytotoxicity, we enhanced miR-145 expression 

Figure 1. miR-145 was decreased in chemoresistant HCC cells. 
CCK-8 assay was used to measure the cytotoxicity of adriamycin 
on HepG2 (A), HepG2/ADM (B), HuH7 (C), and HuH7/ADM (D) 
cells at different concentrations. qRT-PCR data confirmed the down-
regulation of miR-145 in HepG2/ADM (E) and HuH7/ADM (F) 
cells compared with their parental HepG2/WT and HuH7/WT cells. 
** P<0.01.
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miR-145 regulated EMT in HCC cells
It has been reported that Smad3 plays a critical role in 

EMT. Thus we next investigated whether miR-145 was 
involved in regulation of EMT. We found that HepG2/
ADM and HuH7/ADM cells displayed mesenchymal-
like markers, such as the high expression of vimentin 
and decreased expression of E-cadherin (Fig. 4A and 
B). Then, we transfected miR-145 mimic into HepG2/
ADM and HuH7/ADM cells and found that up-regula-
tion of miR-145 enhanced the expression of E-cadhe-
rin and reduced vimentin expression (Fig. 4C and D). 
These results demonstrated that up-regulation of miR-

in HCC cells by transfection with miR-145 mimic. As 
a result, HepG2/ADM cells displayed a dramatic in-
crease in miR-145 levels as shown by qRT-PCR (Fig. 
2A). Interestingly, we found that up-regulation of miR-
145 significantly augmented the ADM cytotoxicity in 
HepG2/ADM cells compared to those transfected with 
negative controls (Fig. 2B). In addition, similar results 
were also observed in HuH7/ADM cells (Fig. 2C and 
D). These results demonstrated that overexpression of 
miR-145 could enhance the chemotherapeutics sensiti-
vity in HCC cells.

Smad3 was a target of miR-145
It is well known that miRNAs affect cellular pro-

cesses by regulating genes expression at the post-trans-
lational level (14). We identified that Smad3 was a po-
tential target of miR-145 by performing computational 
predictions. To determine whether miR-145 targeted 
Smad3 in vitro, we transfected HepG2/ADM cells with 
miR-145 mimic and detected Smad3 mRNA expression 
using qRT-PCR. We found that up-regulation of miR-
145 resulted in a reduction of Smad3 mRNA in HepG2/
ADM (Fig. 3A) and HuH7/ADM cells (Fig. 3B). Wes-
tern blot analysis showed that overexpression of miR-
145 remarkably inhibited Smad3 protein expression 
in HepG2/ADM (Fig. 3C) and HuH7/ADM cells (Fig. 
3D). These results indicated that miR-145 regulated the 
expression of Smad3 at both the mRNA and protein le-
vels. To determine if Smad3 was a direct target of miR-
145, fluorescent reporter assays were performed. Smad3 
3’-UTR with the predicted binding site of miR-145 was 
cloned into a fluorescent reporter vector. Up-regulation 
of miR-145 reduced the luciferase activity in HepG2/
ADM and HuH7/ADM cells transfected with a vector 
containing Smad3 3’ -UTR compared with controls 
(Fig. 3E and F). These results indicated that miR-145 
targeted Smad3 3’-UTR region directly.

Figure 2. miR-145 was involved in chemoresistance of HCC cells. 
HepG2/ADMcells (A) were transfected with miR-145 mimic or 
control oligos, and cell viability was evaluated using CCK-8 assay 
(B). Similarly, HuH7/ADM cells (C) were transfected with miR-145 
mimic or control oligos followed by CCK-8 assay for cell viability 
determination (D). ** P<0.01. Figure 3. Smad3 was a target of miR-145. Chemoresistant tumor 

cells were transfected with miR-145 mimic or control oligos. After 
transfection, the mRNA (A and B) and protein (C and D) levels of 
Smad3 in HepG2/ADM and HuH7/ADM cells was determined by 
qRT-PCR and western blot, respectively. Luciferase reporter assay 
validated that the 3’UTR of Smad3 mRNA was targeted by miR-145 
(E and F). ** P<0.01.

Figure 4. miR-145 regulated EMT in HCC cells. The expression 
of EMT-related biomarkers including vimentin and E-cadherin in 
HepG2/ADM (A) and HuH7/ADM (B) cells were measured by wes-
tern blot. The protein levels of vimentin and E-cadherin were detec-
ted by western blot in HepG2/ADM (C) and HuH7/ADM (D) cells 
transfected with miR-145 mimic or control oligos.
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hanced expression of vimentin and reduced E-cadherin 
level compared with their parental cells. However, such 
EMT features were reversed by overexpression of miR-
145, suggesting that miR-145 may modulate EMT via 
regulation of Smad3 in HCC cells.

In conclusion, our study for the first time demons-
trated that miR-145 was a potential modulator of both 
chemoresistance and EMT in HCC cells. In addition, 
up-regulation of miR-145 or inhibition of Smad3 might 
be potential therapeutic strategies for the treatment of 
chemoresistant liver cancer.
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