

Syringic acid protects retinal ganglion cells against H₂O₂-induced apoptosis through the activation of PI3K/Akt signaling pathway

M. Song^{1, 2#}, Z. Du^{2*#}, G. Lu³, P. Li⁴, L. Wang⁵

¹ Department of Ophthalmology, The 153rd Central Hospital of PLA, Zhengzhou 45007, Henan Province, China
² Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
³ Department of Electronics, The Fourth Military Medical University, Xi'an 710032, China
⁴ Department of Ophthalmology, No.451 Hospital of PLA, Xi'an 710054, China
⁵ Department of Optometry, Xi'an Medical College, Xi'an 710021, China

Abstract: Oxidative damage is believed to contribute to the pathogenesis of diabetic retinopathy. Syringic acid (SA), a naturally occurring O-methylated trihydroxybenzoic acid monomer extracted from *Herba dendrobii*, has been shown to possess antioxidant activity. However, the effects of SA on apoptosis of retinal ganglion cells (RGCs) induced oxidative damages have not yet been explored. The present study aimed to detect the effects of SA against hydrogen peroxide (H_2O_2)-induced cell damage in RGCs and to investigate the molecular mechanisms involved in this process. In the present study, we revealed that SA pretreatment obviously inhibited H_2O_2 -induced RGC-5 cell injury. SA pretreatment also decreased H_2O_2 -induced ROS production and MDA content in RGC-5 cells. In addition, SA pretreatment increased Bcl-2 expression and decreased the expression of Bax and cleaved caspase-3 in H_2O_2 -induced RGC-5 cells. Moreover, SA pretreatment obviously increased PI3K and Akt phosphorylation in H_2O_2 -induced RGC-5 cells. In conclusion, our results suggest that SA may protect RGC-5 cells against apoptosis induced by H_2O_2 through the activation of PI3K/Akt signaling pathway. Thus, SA may be beneficial in the treatment of diabetic retinopathy.

Key words: Syringic acid (SA), diabetic retinopathy, retinal ganglion cells (RGCs), apoptosis.

Introduction

Diabetic retinopathy, one of the leading causes of visual impairment among aged adults in the world, is characterized by the loss of retinal ganglion cells (RGCs) (1, 2). Although reduction in hyperglycemia has been shown to exert positive effects on the development and progression of diabetic retinopathy, the pathogenesis of diabetic retinopathy remains to be elucidated. Thus, it is necessary to develop new therapeutic strategies for this disease. Oxidative damage is believed to contribute to the pathogenesis of diabetic retinopathy. The retina is highly vulnerable to oxidative injury induced by reactive oxygen species (ROS) (3). Recent studies have shown that increased oxidative stress induces the dysfunction of signaling pathways in RGCs, thereby resulting in RGCs injury (4-6).

Herba dendrobii is found in the stem of the orchid Dendrobium nobile Lindl and in many other orchid species of the Dendrobium genus (7). Syringic acid (SA), a naturally occurring O-methylated trihydroxybenzoic acid monomer extracted from Herba dendrobii, has been shown to possess antioxidant, anti-tumor, and antimicrobial activities. Most recently, one study showed that SA reduced oxidative stress and neuron apoptosis in spinal cord ischemia/reperfusion rats (8). In addition, Wei et al. confirmed that SA is capable of protecting rats from developing experimentally induced diabetes cataracts both in vitro and in vivo (9). However, the effects of SA on apoptosis of RGCs induced oxidative damages have not yet been explored. The present study aimed to detect the effects of SA against hydrogen peroxide (H₂O₂)-induced cell damage in RGCs and to investigate the molecular mechanisms involved in this process. Our results showed that SA protects RGCs from apoptosis induced by H_2O_2 through the activation of PI3K/Akt signaling pathway.

Materials and Methods

RGC-5 cell culture and treatment

RGC-5 cells were purchased from the Centre of Cells Resource, Shanghai Institute of Life Science, Chinese Academy of Sciences (China) and cultured in Dulbecco's Modified Eagle Media (DMEM) supplemented with 10% (v/v) fetal bovine serum (FBS; Sigma, St. Louis, MO, USA), 100 U/ml penicillin and 100 μ g/ml streptomycin (Sigma; St. Louis, MO, USA). All cells were maintained at 37°C in a humidified 5% CO₂, 95% air incubator. To induce oxidative stress, RGC-5 cells at a density of 1×10⁴ cells/well were seeded into 96-well and cultured for 24 h. They were then pretreated with various concentrations (10, 20 and 40 μ M) of SA (Sigma, St. Louis, MO, USA) for 24 h prior to addition of 250 μ M H₂O₂ for 24 h.

Cell viability assay

Cell viability was measured with a Cell Counting Kit-8 (CCK-8; Dojindo Laboratories, Kumamoto, Japan) according to the manufacturer's instructions.

Received February 22, 2016; Accepted May 8, 2016; Published May 30, 2016

* **Corresponding author:** Zhaojiang Du, Department of Ophthalmology, Tangdu Hospital, the Fourth Military Medical University, 569 [#], Xinsi Road, Xi'an 710038, China. Email: jiang_zhaodu@sina.com

Copyright: © 2016 by the C.M.B. Association. All rights reserved.

In brief, RGC-5 cells were pre-treated with various concentrations of SA (10, 20 and 40 μ M) for 24 h prior to exposure with 250 μ M H₂O₂ for 24 h. CCK-8 solution (10 μ l) was added to each well and the plates were incubated for 2 h. The absorbance of each well was measured at 450 nm using a microplate reader (Omega Bio-Tek, Inc., Norcross, GA, USA).

Cell cytotoxicity assay

Cell cytotoxicity was evaluated by the lactate dehydrogenase (LDH) assay using the cytotoxicity detection kit in accordance with the manufacturer's instructions. Briefly, RGC-5 cells were treated with different concentrations of SA (10, 20 and 40 μ M) for 24 h. Then, the media were collected and centrifuged at 10,000×g for 3 min at 4 °C, and the supernatants were harvested. One hundred microliters of the LDH reaction was loaded into each well and incubated at room temperature in the dark for 30 min. The absorbance of each solution at 490 nm was measured using a microplate reader (Omega Bio-Tek, Inc., Norcross, GA, USA).

Measurement of Intracellular ROS generation and MDA

ROS level was evaluated using 2', 7'-dichlorodihydrofluorescin diacetate (DCFH-DA) (Sigma–Aldrich, St. Louis, MO, USA). Treated cells were washed twice with PBS, and then incubated with 10 mM DCFH-DA for 30 min at 37 °C in the dark. The fluorescence from the DCF was analyzed using a high content screening system (ArrayScanVTI, Thermo Fisher Scientific, Walsam, MA, USA) with the excitation wavelength set at 488 nm and the emission wavelength set at 525 nm.

The level of MDA was measured in RGC-5 cells using a MDA detection kit (Beyotime Institute of Biotechnology, Nanjing, China).

Western blot

The proteins were extracted from RGC-5 cells using RIPA lysis buffer (Beyotime, Nantong, China). The protein concentration in the lysates was determined using a BCA protein assay kit (Beyotime, Nantong, China). Samples (40 µg) were subjected to 10% SDS-PAGE gel and transferred to Immobilon-P Transfer Membranes (Millipore). The membranes were incubated overnight at 4 °C with one of the following primary antibodies: anti-Bax (1:1000; Cell Signaling Technology, Beverly, MA, USA), anti-Bcl-2 (1:1000; Cell Signaling Technology), anti-cleaved caspase-3 (1:1000; Cell Signaling Technology), anti-p-PI3K antibody (1:1000; Cell Signaling Technology), anti-PI3K antibody (1:1000; Cell Signaling Technology), anti-p-Akt antibody (1:1000; Cell Signaling Technology), anti-Akt antibody (1:1000; Cell Signaling Technology) and anti- β -actin (1:2000; Santa Cruz Biotechnology). Subsequently, the membranes were incubated with peroxidase-conjugated secondary antibody at room temperature for 1 h. The bands were visualized with Luminescent image analyzer (Image-Ouant LAS 4000, GE Healthcare, UK) using chemiluminescence (GE Healthcare, Buckinghamshire, UK).

Statistical analysis

Results from at least three independent experiments were expressed as mean \pm SD. Statistical significance

was analyzed with the one-way factorial ANOVA or the Student's two-tailed t-test. Differences with P<0.05 were considered statistically significant.

Results

SA protects RGC-5 cells from H₂O₂-induced insults

First, we investigated the effect of SA on H_2O_2 -induced RGC-5 cells viability using the CCK-8 assay. As shown in Figure 1A, compared with untreated RGC-5 cells, treatment with SA alone did not obviously affect cell viability. When RGC-5 cells were treated with H_2O_2 for 24 h, the cell viability was significantly decreased. However, pretreatment with SA reversed this effect, exhibiting a dose-dependent manner (Figure 1B).

We further examined whether SA pretreatment could influence H_2O_2 -induced RGC-5 cells cytotoxicity. The results showed that H_2O_2 treatment significantly increased LDH release, however, pretreatment with SA significantly reduced the release of LDH in RGC-5 cells (Figure 1C).

SA inhibits ROS production and lipid peroxidation induced by H_2O_2 in RGC-5 cells

We next determined the effects of SA on the H_2O_2 induced oxidative stress in RGC-5 cells. As shown in Figure 2A, OGD exposure markedly increased cellular intracellular ROS generation, while SA (10, 20 and 40 μ M) pretreatment decreased H_2O_2 -induced ROS production in RGC-5 cells, exhibiting a dose-dependent manner. Similarly, SA pretreatment resulted in a significant decrease in H_2O_2 -induced MDA content in a dosedependent manner (Figure 2B).

SA protects RGC-5 cells against apoptosis induced by H_2O_2

Oxidative stress-induced RGCs apoptosis is involved in the progression of diabetic retinopathy. Therefore, we investigated the effect of SA on RGC-5 cells apoptosis induced by H_2O_2 . As expected, Western blot analysis showed that H_2O_2 significantly increased the expression levels of Bax and caspase-3 proteins, and decreased Bcl-2 expression; while SA pretreatment down-regulated the expression of Bax and caspase-3, and increased the expression of Bcl-2 in RGC-5 cells (Figure 3).

SA attenuates H₂O₂-induced impairments to RGC-5 cells by the activation of the PI3K/Akt signaling pathway

Activation of PI3K/Akt signaling pathway has been reported to participate in RGCs apoptosis induced by H_2O_3 . So, to explore the molecular mechanism by which

Figure 3. SA protects RGC-5 cells against apoptosis induced by H_2O_2 . RGC-5 cells were treated with SA (10, 20 and 40 μ M) for 24 h prior to H_2O_2 insult and then incubated for 24 h. (A) The expression of Bcl-2, Bax, cleaved caspase-3, and β -actin proteins was detected by western blotting and representative blots were shown. (B) Quantification analysis of Bcl-2, Bax and cleaved caspase-3. **P*<0.05 *vs.* control group. **P*<0.05 *vs.* H₂O, group.

SA inhibits H_2O_2 -induced RGCs apoptosis, we investigated the protein expression levels of p-PI3K, PI3K, p-Akt and Akt by western blot. As shown in Figure 4, H_2O_2 markedly inhibited PI3K and Akt phosphorylation. However, SA pretreatment obviously increased PI3K and Akt phosphorylation in H_2O_2 -induced RGC-5 cells.

Discussion

In the present study, we revealed that SA pretreatment obviously inhibited H_2O_2 -induced RGC-5 cell injury. SA pretreatment also decreased H_2O_2 -induced ROS production and MDA content in RGC-5 cells. In addition, SA pretreatment increased Bcl-2 expression and decreased the expression levels of Bax and cleaved caspase-3 in H_2O_2 -induced RGC-5 cells. Moreover, SA pretreatment obviously increased PI3K and Akt phosphorylation in H_2O_2 -induced RGC-5 cells.

 H_2O_2 is an exogenous source for ROS production and excess H_2O_2 can enter the cells and induce cytotoxicity due to its high membrane permeability , and has been reported to trigger apoptosis in RGC-5 cells (10). In this study, we used H_2O_2 as an exogenous inducer of oxidative stress in RGC-5 cells. As expected, we found that H_2O_2 significantly decreased RGC-5 cell viability. However, pretreatment with SA reversed this effect, exhibiting a dose-dependent manner.

Oxidative stress plays an important role in the pathogenesis of diabetic retinopathy (11-13). The production of ROS may cause the raise of oxidative stress

Figure 1. SA attenuates H_2O_2 -induced impairments to RGC-5 cells by the activation of the PI3K/Akt signaling pathway. RGC-5 cells were treated with SA (10, 20 and 40 µM) for 24 h prior to H_2O_2 insult and then incubated for 24 h. (A) The expression of p-PI3K, PI3K, p-Akt and Akt proteins was detected by western blotting and representative blots were shown. (B) The optical density is expressed as the ratio of p-PI3K to PI3K; (C) The optical density is expressed as the ratio of p-Akt to Akt. **P*<0.05 *vs.* control group. #*P*<0.05 *vs.* H_2O_2 group.

which can damage the cellular organelle (14). Previous studies reported that RGCs death is caused by over production of ROS which may lead to diabetic retinopathy (15, 16). In this study, we observed that SA pretreatment significantly decreased the production of ROS induced by H₂O₂ in RGC-5 cells. MDA is a decomposition product of peroxidized polyunsaturated fatty acids, mainly considered as an index of lipid peroxidation (17). Morton et al. reported that SA is a strong inhibitor of low-density lipoprotein oxidation, contributing to the scavenging of free radicals, reducing production of MDA, and thus slowing atherosclerosis (18). Similarly, in this study, we found that SA pretreatment greatly reduced MDA content induced by H₂O₂ in RGC-5 cells. All those findings supported that SA protected RGCs from H₂O₂-induced cytotoxicity due to its radical scavenging activities.

Multiple lines of evidence showed that members of

the Bcl-2 gene family play important roles in the activation and control of RGCs death (19-22). Caspases are key mediators of cell death and caspase-3 is an executioner for the death program in various cells in response to oxidant. Oxidative stress induces caspase-3 activation in RGCs (2, 23, 24). Notably, one study showed that SA significantly decreased the number of apoptotic neurons in rats with spinal cord ischemia/reperfusion (8). In line with the previous study, herein, our data revealed that SA pretreatment increased Bcl-2 expression and decreased the expression of Bax and cleaved caspase-3 in H₂O₂-induced RGC-5 cells. These results suggest that SA suppressed cell apoptosis by promoting the expression of Bcl-2 while inhibiting that of Bax and caspase-3 in RGC-5 cells induced by H₂O₂.

Recent studies have shown that the PI3K/Akt signaling pathway is important for RGC survival (25-27). Akt is a serine-threonine kinase that is activated by the secondary messenger PI3K. The up-regulation of p-Akt suppressed RGCs apoptosis via several mechanisms including alteration of gene expression, inhibition of caspase-3 activation and suppression of cytochrome c release from the mitochondria (28). Intravitreous administration of BDNF and IGF-1 induced the activation of Akt in retinas of optic nerve axotomized eyes and prevented RGC death (29, 30). Herein, we observed that SA pretreatment obviously increased PI3K and Akt phosphorylation in H₂O₂-induced RGC-5 cells. All these data suggest that SA inhibited the apoptosis of RGC-5 cells from H₂O₂-induced injury via the activation of PI3K/Akt signaling pathway.

In conclusion, our results demonstrate that SA may protect RGC-5 cells against apoptosis induced by H_2O_2 through the activation of PI3K/Akt signaling pathway. Thus, SA may be beneficial in the treatment of diabetic retinopathy.

References

1. Kobrin Klein BE. Overview of epidemiologic studies of diabetic retinopathy. Ophthal Epidemiol 2007; 14:179-183.

2. Koriyama Y, Ohno M, Kimura T, Kato S. Neuroprotective effects of 5-S-GAD against oxidative stress-induced apoptosis in RGC-5 cells. Brain Res 2009; 1296:187-195.

3. Kowluru RA, Chan P-S. Oxidative stress and diabetic retinopathy. J Diabetes Res 2007; 2007:43603.

4. Boyd ZS, Kriatchko A, Yang J, Agarwal N, Wax MB, Patil RV. Interleukin-10 receptor signaling through STAT-3 regulates the apoptosis of retinal ganglion cells in response to stress. Invest Ophth Vis Sci 2003; 44:5206-5211.

5. Maher P, Hanneken A. The molecular basis of oxidative stressinduced cell death in an immortalized retinal ganglion cell line. Invest Ophth Vis Sci 2005; 46:749-757.

6. Lieven CJ, Vrabec JP, Levin LA. The effects of oxidative stress on mitochondrial transmembrane potential in retinal ganglion cells. Antioxid Redox Sign 2003; 5:641-646.

7. Zhang X, Xu J, Wang N, Hiroshi K, Yao X, Wang Z. Studies on antioxidant activity of bibenzyls and phenolic components from Dendrobium nobile. Chinese Pharmaceutical J 2008; 43:829-832.

8. Tokmak M, Yuksel Y, Sehitoglu MH, Guven M, Akman T, Aras AB, *et al.* The Neuroprotective Effect of Syringic Acid on Spinal Cord Ischemia/Reperfusion Injury in Rats. Inflammation 2015;38:1969-1978.

9. Wei X, Chen D, Yi Y, Qi H, Gao X, Fang H, et al. Syringic acid

ii prevents diabetic cataract pathoge- gene family in the signal

extracted from Herba dendrobii prevents diabetic cataract pathogenesis by inhibiting aldose reductase activity. Evid-Based Compl Alt 2012; 2012:426537.

10. Jung SH, Kim BJ, Lee EH, Osborne NN. Isoquercitrin is the most effective antioxidant in the plant Thuja orientalis and able to counteract oxidative-induced damage to a transformed cell line (RGC-5 cells). Neurochem Int 2010; 57:713-721.

11. Pan H-Z, Zhang H, Chang D, Li H, Sui H. The change of oxidative stress products in diabetes mellitus and diabetic retinopathy. Brit J Ophthalmol 2008; 92:548-551.

12. Madsen-Bouterse SA, Kowluru RA. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Dis 2008; 9:315-327.

13. Hartnett ME, Stratton RD, Browne RW, Rosner BA, Lanham RJ, Armstrong D. Serum markers of oxidative stress and severity of diabetic retinopathy. Diabetes Care 2000; 23:234-240.

14. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 2004; 55:373-399.

15. Himori N, Yamamoto K, Maruyama K, Ryu M, Taguchi K, Yamamoto M, *et al.* Critical role of Nrf2 in oxidative stress-induced retinal ganglion cell death. J Neurochem 2013; 127:669-680.

16. Dong L-Y, Jin J, Lu G, Kang X-L. Astaxanthin attenuates the apoptosis of retinal ganglion cells in db/db mice by inhibition of oxidative stress. Mar Drugs 2013; 11:960-974.

17. Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radical Biol Med 2009; 47:469-484.

18. Morton LW, Croft KD, Puddey IB, Byrne L. Phenolic acids protect low density lipoproteins from peroxynitrite-mediated modification in vitro. Redox Rep 2000; 5:124-125.

19. Huang X, Wu D-Y, Chen G, Manji H, Chen DF. Support of retinal ganglion cell survival and axon regeneration by lithium through a Bcl-2-dependent mechanism. Invest Ophth Vis Sci 2003; 44:347-354.

20. Isenmann S, Wahl C, Krajewski S, Reed JC, Bähr M. Up-regulation of Bax protein in degenerating retinal ganglion cells precedes apoptotic cell death after optic nerve lesion in the rat. Eur J Neurosci 1997; 9:1763-1772.

21. Nickells RW, Semaan SJ, Schlamp CL. Involvement of the Bcl2

gene family in the signaling and control of retinal ganglion cell death. Prog Brain Res 2008; 173:423-435.

22. Bonfanti L, Strettoi E, Chierzi S, Cenni MC, Liu X-H, Martinou J-C, *et al.* Protection of retinal ganglion cells from natural and axo-tomy-induced cell death in neonatal transgenic mice overexpressing bcl-2. J Neurosci 1996; 16:4186-4194.

23. Nakayama M, Aihara M, Chen Y-N, Araie M, Tomita-Yokotani K, Iwashina T. Neuroprotective effects of flavonoids on hypoxia-, glutamate-, and oxidative stress–induced retinal ganglion cell death. Mol Vis 2011; 17:1784-1793..

24. Munemasa Y, Kim SH, Ahn JH, Kwong JM, Caprioli J, Piri N. Protective effect of thioredoxins 1 and 2 in retinal ganglion cells after optic nerve transection and oxidative stress. Invest Ophth Vis Sci 2008; 49:3535-3543.

25. Tsai RK, Chang CH, Sheu M-M, Huang Z-L. Anti-apoptotic effects of human granulocyte colony-stimulating factor (G-CSF) on retinal ganglion cells after optic nerve crush are PI3K/AKT-dependent. Exp Eye Res 2010; 90:537-545.

26. Qi Y, Chen L, Zhang L, Liu W-B, Chen X-Y, Yang X-G. Crocin prevents retinal ischaemia/reperfusion injury-induced apoptosis in retinal ganglion cells through the PI3K/AKT signalling pathway. Exp Eye Res 2013; 107:44-51.

27. Luo JM, Cen LP, Zhang XM, Chiang SWy, Huang Y, Lin D, *et al.* PI3K/akt, JAK/STAT and MEK/ERK pathway inhibition protects retinal ganglion cells via different mechanisms after optic nerve injury. Eur J Neurosci 2007; 26:828-842.

28. Nakazawa T, Shimura M, Tomita H, Akiyama H, Yoshioka Y, Kudou H, *et al.* Intrinsic activation of PI3K/Akt signaling pathway and its neuroprotective effect against retinal injury. Curr Eye Res 2003; 26:55-63.

29. Nakazawa T, Tamai M, Mori N. Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. Invest Ophth Vis Sci 2002; 43:3319-3326.

30. Kermer P, Klöcker N, Labes M, Bähr M. Insulin-like growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-K-dependent Akt phosphorylation and inhibition of caspase-3 in vivo. J Neurosci 2000; 20:722-728.