sof GENE AS A SPECIFIC GENETIC MARKER FOR DETECTION OF *Streptococcus pyogenes* CAUSING PHARYNGITIS AND RHEUMATIC HEART DISEASE

A. KUMAR\(^1\) *, A. BHATNAGAR\(^1\), S. GUPTA\(^2\), S. KHARE\(^2\) AND SUMAN\(^3\)

1 Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi-110007, India
2 National Centre for Disease Control, Sham Nath Marg, Delhi-110054, India
3 Institute of Advance Research and Studies, Amity University, Noida-201303, India

Abstract

Streptococcus pyogenes is a human pathogen causing invasive and non-invasive diseases, as well as severe sequels, such as rheumatic fever. Rheumatic heart disease is a sequel of rheumatic fever results from an untreated strep throat causing damage of the heart valves. The usual detection methods of strep throat are culture, virulent test, antibiotic sensitivity, CRP, ESR and PCR. These methods are expensive, time consuming and have some limitations. All reported PCR methods are based on either 16S rRNA or specific gene based along with other methods to confirm the disease in more than 1h. Here, we have developed a PCR based diagnosis of *Streptococcus pyogenes* using specific primers of virulent sof gene (serum opacity factor) of *S. pyogenes*. Our method is an improvement of the existing methods and the overall analysis completes in 1 h which is the least time reported so far for the confirmation of the disease. Amplicon of 228 bp of sof gene does not show homology with other organisms and can be used as genetic marker for *S. pyogenes*.

Key words: Genetic marker, Pharyngitis, Rheumatic heart disease, *S. pyogenes*, sof gene.

INTRODUCTION

Streptococcus pyogenes (Group A streptococcus) is a Gram-positive, nonmotile and non spore forming coccus. The group A streptococcus (GAS) causes a variety of diseases, ranging from mild and self-limiting infections of the pharynx and skin to more-severe and life-threatening infections. The major sequels of group A streptococcal infections are acute rheumatic fever (RF), rheumatic heart disease (RHD) and acute glomerulonephritis (4). The incidence of rheumatic fever has decreased somewhat in developed countries but still the major problem in developing countries specially in school children. The prevalence rate of rheumatic heart disease in India is around 6-11 cases whereas in US 0.6, Japan 0.7, Asia 0.4-21, 0.3-15 and south Africa 1-17 cases per 1000 school children population (19). Approximately 10,000-15,000 cases of invasive GAS disease occur annually in the United States, associated...
with a 10-13% mortality rate (2). *Streptococcus pyogenes* produces a wide array of virulence factors that helps the pathogenesis of this bacterium in the host viz M protein, R and T protein, F-protein, streptolysin-A, streptolysin-O, peptidoglycan, lipoteichoic-acid, hyaluronidase, protease, streptodornases A-D, superantigens (5,12,16). Rapid and accurate diagnosis is essential for both optimal management of patients and for timely antibiotic mediated prophylaxis. The commonly used diagnostic tests for *S. pyogenes* are culture, immunological test, biochemical test and PCR. The advent of PCR technology has positive impact on biomedical research by providing the most sensitive and rapid method to detect microbial pathogens in clinical samples.

It was evident that GAS are related with heart disease due to autoantibody responses (cross reactivity) but since there are many antibodies in the sera, monoclonal antibodies were used to understand the pathogenesis of RHD, that showed the reaction of MAbs with myocardium in heart tissues (7-9). Rheumatic fever is a systemic disease affecting the periarteriolar connective tissue and can occur after an untreated Group A ß-hemolytic streptococcal pharyngeal infection. It may be due to antibody cross-reactivity Type II hypersensitivity reaction and is termed *molecular mimicry* (1, 14). RF leads to Rheumatic heart disease. Initially, the organism adhere and invade host epithelial cells, then B and T cells are activated by specific streptococcal antigens and superantigens leading to strong responses against streptococcal and host antigens. The development of pathogenic clones of B and T lymphocytes are important in development of the disease. The antibodies against the group A carbohydrate, which is cross-reactive with the valve surface, bind to the valve surface endothelium (endocardium) and lead to damage of the valve. M protein-reactive T cells enter the valve through the surface endothelium by binding to cell adhesion molecules such as VCAM-1 and extravasate into the valve. The formation of scar tissue in the valve followed by neovascularization allows for the disease to continue in the valve (10, 11). Identification of serum opacity factor (*sof*) gene which serves as a marker for serotyping and *S. pyogenes*. SOF Binds to Fibulin-1 and fibrinogen present in serum, this search was undertaken because many of the surface proteins of group A streptococci have multiple binding domains for serum proteins, and the binding of these proteins have been linked to increased survival of group A streptococci in blood and to adhesion to host cells (3,6,15). Serum opacity factor is a bifunctional cell surface protein expressed by 40-50% of group A streptococcal strains comprised of a C-terminal domain that binds fibronectin and an N-terminal domain that mediates opacification of mammalian sera (17, 21). The molecule SOF exhibits N terminal sequence variation and is under the positive transcriptional regulation of *mga* (multiple gene activator) and elicit type-specific immune responses (13).

MATERIALS AND METHODS

Sample collection and chemicals

The bacterial culture was from IMTECH Chandigarh and the patients throat swab samples were collected from Safdarjang Hospital, Delhi. dNTP, Taq polymerase, PCR buffer, MgCl₂ and RNase were from Bangalore GeNei, India. Tris and EDTA were purchased from Sigma-Aldrich, USA. DNA purification kit (GFX column) was purchased from Amersham Biosciences, UK Ltd. Primers were synthesized from TCGA (The Centre for Genomic Application, India).

Sample preparation

The patient throat swab sample was directly dissolved in 1 ml of STE buffer (50 mM Tris, 50 mM EDTA, 20% sucrose, pH 8.0) and heated for 2 min at 95°C then centrifuged at 3,800xg for 2 min. The pellet was washed twice with milli Q water by centrifugation and finally dissolved in water and transferred into PCR tube. This was used as genomic DNA and quantified by Nanodrop spectrophotometer. The *S. pyogenes* (strain M140, IMTECH, India) was also cultured in Todd Hewett broth and genomic DNA was isolated at NCDC using phenol chloroform method (18) to use as control.

Amplification of target gene

The genome of *Streptococcus pyogenes* was obtained from the NCBI and the sequence of *sof* gene was retrieved and checked for the homology with genes of other organisms. The specific *sof* gene based forward primer (5’-TAGCCCCGACAGTTTAGGA-3’) and reverse primer (5’-AGGCTGGAGTAGTGCCTGAA-3’) were synthesized and PCR was carried out with the following steps: Initial heating at 95°C for 2 min, followed by 25 cycles of denaturation at 95°C for 7s, annealing at 55°C for 10s, extension at 72°C for 20 s and final extension for 3 min after the last cycle. The PCR was performed in 25µl of reaction mixture containing 1 x assay buffer, 1mM of dNTP (0.25 mM of each dATP, dGTP, dCTP and dTTP), 0.2 µM each of forward and reverse primers, genomic DNA (approx.100ng), 0.75 units Taq polymerase and Milli Q water. Sharp band was observed corresponding 228 bp in DNA marker. The resulting PCR product was purified using GFX column and electrophoresis of PCR product was carried out in 2 % agarose gel. The PCR product was...
A. KUMAR et al. / Genetic marker for rheumatic heart disease

RESULTS AND DISCUSSION

The amplicon of 228 bp was viewed in 2 % agarose gel in UV light (Fig.1). The DNA sequence of amplicon with BLAST shows similarity with sof gene of S. pyogenes which confirmed that the right fragment within sof gene had been correctly amplified. sof is a unique virulence gene of S. pyogenes and therefore, PCR based detection of S. pyogenes using this gene has higher specificity. SOF had proven to play important role in fibulin binding, opacifying the serum and adhesion, of the pathogen to the epithelial cells of the host (6). Many methods like culture, CRP (c-reactive protein), EST (erythrocyte sedimentation test), rapid antigen test, antibiotic sensitivity are available but these are time consuming and have some limitations (22). Here, we have used PCR as a powerful tool in detection of S. pyogenes in 1 h (including electrophoresis) without isolating genomic DNA from pathogen. Primers used in this experiment are specific and amplify only the specific region under specific conditions. Since sof is virulence gene and does not have homology with other organisms, it can be used as genetic marker (228bp) for the detection of S. pyogenes causing pharyngitis and rheumatic heart disease. The diagnosis of control and suspected bacterial pharyngitis patients (20 samples) were carried out using different available methods (Table 1) as well as PCR using sof gene primers (Fig.2).

Table 1. Diagnosis of suspected patients using different available methods and PCR using sof gene as specific genetic marker

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Present available methods</th>
<th>PCR with marker sof gene (228 bp)</th>
<th>Normal/ Infected patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Microscopic (Gram +/−)</td>
<td>Immunology (Rapid Ag detection)</td>
<td>Culture on blood agar β-hemolysis</td>
</tr>
<tr>
<td>1 control</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>2 control</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>3</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>4</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>7</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>8</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>9</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>10</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>11</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>12</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>13</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>14</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>15</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>16</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>17</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>18</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>19</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>20</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Normal healthy individuals = N Control = C
S.pyogenes infected patients = P

Copyright © 2011 Cellular & Molecular Biology http://www.cellmolbiol.com
Sample No.5, 6 and 11 were confirmed positive by PCR whereas it was showed negative by other methods due to their limitations. Sample No.5 and 12 showed catalase positive whereas others showed negative. Catalase test is not specific for *S. pyogenes* because *S. pyogenes* strains has divided into two classes with respect to the production of H$_2$O$_2$, i.e., producers and nonproducers (20). However, the metabolic basis and biological significance of bacterial H$_2$O$_2$ production are largely unexplored. Similarly, other tests have also some limitations and sometimes give false results. The results suggest that sof gene can be used as specific genetic marker.

Figure 2. Agarose gel electrophoresis (2.0%) of normal and infected patients with pyogenes. Lane 1 and 2 (control) and lane 5, 6 and 11 show single band corresponding to 228 bp of DNA marker (infected patients) whereas Lane 4, 7-10, 12-20 show no bands (normal person).

Acknowledgements – The authors thank to Dr. Rajesh Gokhale, Director IGIB for discussion and to Prof. N.N. Mathur, ENT Department, Safdarjung Hospital, New Delhi for providing patients samples for analysis. This work was supported by Department of Science and Technology, Govt. of India, New Delhi.

Other articles in this theme issue include references (23-38).

REFERENCES

Copyright © 2011 Cellular & Molecular Biology

http://www.cellmolbiol.com

