Issue
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.
Safranal prevents rotenone-induced oxidative stress and apoptosis in an in vitro model of Parkinson's disease through regulating Keap1/Nrf2 signaling pathway
Corresponding Author(s) : P-K. Pan
weniweni@163.com
Cellular and Molecular Biology,
Vol. 62 No. 14: Issue 14
Abstract
Safranal, a major constituent of saffron, possesses antioxidant and anti-apoptotic properties showing considerable neuroprotective effects. However, whether safranal shows therapeutic effect on Parkinson's disease (PD) remains unknown. In this study, we aimed to investigate the potential effect of safranal on PD using an in vitro model of PD induced by rotenone. We found that safranal significantly inhibited rotenone-induced cell death in a dose-dependent manner. Moreover, safranal also markedly suppressed the reactive oxygen species (ROS) generation and cell apoptosis induced by rotenone. Further investigation showed that safranal inhibited the expression of kelch-like ECH-associated protein 1 (Keap1) and promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) in rotenone-induced dopaminergic neurons. Meanwhile, the downstream antioxidant enzyme genes of Nrf2 including glutathione S transferase (GST), glutamate-cysteine ligase catalytic subunit (GCLc), NADPH-quinone oxidoreductase 1 (NQO1) and heme oxygenase1 (HO-1) were also induced by safranal in rotenone-induced dopaminergic neurons. However, the knockdown of Nrf2 significantly abrogated the protective effect of safranal on rotenone-induced neurotoxicity. Taken together, our study suggests that safranal protects against rotenone-induced neurotoxicity associated with Nrf2 signaling pathway implying that safranal may serve as a potent and promising therapeutic drug for the treatment of PD.
Keywords
Safranal
Parkinson's disease
ROS
cell apoptosis
Nrf2.
Pan, P.-K., Qiao, L.-Y., & Wen, X.-N. (2016). Safranal prevents rotenone-induced oxidative stress and apoptosis in an in vitro model of Parkinson’s disease through regulating Keap1/Nrf2 signaling pathway. Cellular and Molecular Biology, 62(14), 11–17. https://doi.org/10.14715/cmb/ 2016.62.14.2
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX